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To the colleagues who have enriched my professional life 



Introduction to the second edition 

In the ten years that have passed since the first edition of this book was published, 
the main developments in the subject of control have been: 

• Within control theory proper, the rise of H a  and similar approaches, allowing a 
combination of practicality, rigour and user interaction to be brought to bear on 
complex control problems and helping to close the often discussed gap between 
control theory and practice. 

• The rise of artificial intelligence (AI) techniques such as a neural networks that, 
within a computer intensive context, have become inextricably linked into the 
control subject. 

• The rise in the availability of comprehensive software packages particularly 
designed for solving control related problems. 

In this new edition, I have added two additional chapters devoted to H ~  approaches 
and to AI approaches, respectively. I have also added a chapter that, placed at the end 
of the book, briefly reviews the development of control, so forming something of a 
context for what has gone before. 

In addition to these major changes, I have reviewed and, where necessary, revised 
all the earlier material. In the spirit of the first edition, I have added ten additional 
diversionary 'Interludes' and of course taken the opportunity to update and enhance 
the references and suggestions for further reading. I very much hope that the resulting 
new edition is well placed to satisfy the aims of the first edition, which were as stated 
in the following section. 



The structure, content and purpose of the book 

This book is drastically different from other control books. It follows no well-tried 
formula but, thinking as it goes, imitates in a sense the author's discussions with stu- 
dents, supervisees and colleagues. Most of  these discussions were interesting because 
they were concerned with concepts too general or too simple to be included in stand- 
ard textbook material or alternatively they were too detailed, esoteric or unfinished 
to be there. 

The book is structured around a few limited concepts that are central to control 
theory. The concepts are presented with a minimum of  detail and, once sufficient 
work has been done to establish ideas, the reader is pointed off to specific references. 

The treatment is augmented by more detailed interludes. These interludes appear 
in a different typescript and although they are always relevant to their context, they are 
not necessarily so easy to follow as the mainstream text. However, if they are skipped 
over, this will not be detrimental to understanding the main thread of  the book. 

The first three chapters, quite deliberately, contain no mathematics at all. It is 
intended that these chapters can form a useful introduction to control theory for a 
wide class o f  readers. These chapters largely answer the questions: 

• What is control theory? 
• What are the main ideas? 
• What are the features that make the subject so fascinating and absorbing? 

The features of  the book may be summarised: 

• Emphasis on concepts. 
• Follow up for the reader by reference links from the text to easily available 

standard books. 
• The first three chapters are entirely non-mathematical. 
• The large number of  interludes stimulates interest. Appearing in a distinctive 

typescript, they may be omitted without detriment in a first reading of  the 
mainstream text. 

• Very extensive annotated bibliography. 



xx The structure, content and purpose of  the book 

The policy for citation of references within this book is worthy of explanation: 

Control is, in general, an integrated rather than disparate subject. Many of the 
references cited in this text are relevant to a number of different sections and chapters 
of the book and, on this basis, it is appropriate that references are cited as part of 
the whole work rather than by individual chapter. A complete list of references is 
therefore given in Chapter 19. However, the reader will also note that Chapters 8, 
16 and 17 contain references that are not only of general use, but are of primary 
importance to the chapter in which they appear. 

The intended readership for the book is: 

• Students working at any level on control engineering. Despite the multiplicity of 
available control books at all levels, students still struggle to understand basic 
concepts. This book is intended as their companion and friend. 

• Students of science, computing, mathematics and management. The book will 
supply these students with the main concepts of control, thus supporting the 
auxiliary control courses that are attended by these students. 

• Industrialists, managers and professionals in a wide variety of fields. A large 
number of professionals from a wide variety of fields wish to understand the 
fundamentals and the potential of control, to an extent that will demystify the 
subject and that will allow them more effectively to assess the benefits of control 
to their particular areas. 

• Engineers already familiar with control. They could actually find the book 
enjoyable, paralleling the enjoyment that I have obtained from writing it. 

Every worthwhile discipline has a strong structure and underlying principles and 
is possessed of a continuous striving towards improved coherence so that what, at 
first sight, appeared to be isolated phenomena take their place in the structure in a 
consistent way. Thus, the science of physics has been brought, by generations of 
dedicated development, to its present well-unified state. 

Here, we are concerned with the structure, principles and context of control theory. 
Control theory is a very powerful body of knowledge indeed. It allows the syn- 

thesis of systems having specified characteristics. It can model and include within 
its control loops any complex object (for instance, an aircraft) that needs to be so 
included. It can produce adaptive solutions that change automatically as circum- 
stances change. It can combine with pattern recognition, with expert systems and 
with artificial intelligence (AI) in general. It makes use of computer power to identify 
problems, to solve problems, to validate solutions and to implement the final solu- 
tions. Control has an impressive track record of successful applications across aircraft, 
ships, satellite and missile guidance, process industries (chemicals, oil, steel, cement, 
etc.), pharmaceuticals, domestic and computer goods (automatic cameras, etc.), pub- 
lic utilities (e.g. all aspects of electrical generation and supply), automatic assembly, 
robotics, prosthetics and increasingly it lends its basic ideas to other disciplines. 

Control theory is built up around a few very simple ideas: such ideas as feedback 
loop and stability. The writing of this book has been motivated by a belief that it is 



The structure, content and purpose of  the book xxi 

absolutely vital to obtain a robust understanding of these few simple ideas and not 
allow them to be submerged below a cloud of techniques or numerical detail. 
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Chapter 1 

Control concepts: a non-mathematical  
introduction 

1.1 General systems ideas 

The objects under study in control theory are systems. A system is any set of elements 
connected together by information links within some delineated system boundaries. 

Referring to Figure 1.1, note that the system boundary is not a physical boundary 
but rather a convenient fictional device. Note also how information links may pass 
through the system boundary. 

element 

Figure 1.1 The structure of  a system 



2 Control theory 

Since control theory deals with structural properties, it requires system represen- 
tations that have been stripped of all detail, until the main property that remains is 
that of connectedness. (The masterly map of the London Underground system is an 
everyday example of how useful a representation can be when it has been stripped of 
all properties except that of  connectedness.) 

Connectedness is a concept from topology. Topology, the discipline that studies 
the underlying structure of mathematics, offers fascinating reading to aspiring systems 
theorists. Recommended reading is given in the Bibliography. Clearly, a system 
is a very general concept; control theory is most interested in certain classes of 
system and to make progress we delineate the classes. First it is interested in dynamic 
systems - these are systems whose behaviour over a time period is of interest. Thus 
if a system were concerned with population aspects, a similar dynamic system would 
be concerned with population growth. 

Secondly, it is most interested in and most powerful when dealing with linear sys- 
tems. A linear system is characterised by the property shown in Figure 1.2. The upper 
part of  the figure shows a system's response to some arbitrary stimulus. The lower 
part shows how, in the presence oflinearity, the response to a scaled-up version of the 
stimulus is simply a scaled-up version of the previous response, with proportionality 
being preserved. 

Finally, it is interested in feedback systems - these are systems where information 
flows in one or more loops, so that part of  the information entering an element may 
be information that previously left that element (Figure 1.3). 

Systems are often visualised in the form of block diagrams, illustrating the main 
functions, their supposed interconnection and (possibly) their interconnection to the 
environment of the system. Thus, a simple representation of the human temperature 
regulation system might be as shown in Figure 1.4. 

magnitude 

stimulus to 
system 

time 

linear 
system 

magnitude 

stimulus as above 
but magnified linear 

system 

magnitude 

systems 
response 

time 

magnitude 

response is as above 
but magnified k times 

Figure 1.2 Linear system characteristics 
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system 
boundary 

Figure 1.3 A simple feedback system 

environment 

Figure 1.4 A simple representation of the human temperature regulation system 

1.2 What is control theory? - an initial discussion 

Many areas of study are fortunate in that their titles trigger an immediate image 
of their scope and content. For instance, the names 'human anatomy', 'veterinary 
medicine', 'aeronautical engineering' and 'ancient history' all conjure up coherent 
visions of well-defined subjects. This is not so for control theory although almost 
everyone is interested in control in the sense ofbeing able to achieve defined objectives 
within some time frame. Rather specific examples occur in the named professions of 
'financial controller' and 'production controller'. 



4 Control theory 

Control theory applies to everyday situations, as in the examples given above, just 
as well as it applies to the more exotic task ofmanoeuvring space vehicles. In fact, the 
concepts of  control theory are simple and application-independent. The universality 
of control theory means that it is best considered as applied to an abstract situation 
that contains only the topological core possessed by all situations that need to be 
controlled. Such an abstract situation is called a system. 

The argument is that if  we know how to control a highly general situation called 
a system then we shall be able to control any and every particular situation. This is the 
viewpoint of  control theory and it is this viewpoint that gives it its extraordinary power. 

Thus any situation, delineated from its environment for study, is called a system. 
When control theory wishes to study temperature regulation in the human body, it 
concems itself with a system involving blood circulation, heat generation and heat 
loss mechanisms and decision-making by the brain. Systems can usefully be defined 
in almost any discipline - they are not confined to science or engineering. 

Control theory concems itself with means by which to alter the future behaviour of 
systems. For control theory to be successfully applied, there needs to be available: 

(i) A purpose or objective that is linked with the future state of  the system. (Clearly 
the past cannot be influenced nor, since no response can take place in any system 
in zero time, can the present.) 

The objective of  any control system in every case is connected with the 
performance of the system over some period of time - the accountant and the 
industrial manager want to see long periods of  smooth and profitable operation. 
Sometimes this leads to conflicting requirements, in the sense that short term 
objectives are frequently in direct opposition to long term objectives. In general 
terms this objective can be considered to be the desired behaviour of the system. 

(ii) A set of  possible actions that offers an element of choice. (If no variation of 
actions is possible, control cannot be exercised and the system will follow 
a course that cannot be modified.) 

(iii) (Unless a trial and error strategy is to be adopted) some means of choosing the 
correct actions (ii) that will result in the desired behaviour (i) being produced. 

In general terms, this requirement is met by a model capable of predicting 
the effect of  control actions on the system state. Such a model may be implicit 
and not even recognised as a model or it may consist of  a large and complex 
set of  equations. 

For the accountant, the model is a balance sheet together with inherited 
wisdom. For the military commander, the model is a map of local terrain and 
a knowledge of the types and deployments of men and equipment. For the 
control of  quantities that can be measured by sensors, mathematical models in 
the form of stored curves or sets of equations will usually be used. 

We see then that to achieve successful control we must have a defined objective 
and be able to predict adequately, over some sufficient time scale, all the outcomes of 
all the actions that are open to us. For instance, a national power station build- 
ing programme can only be planned once predictions of the future demand for 
electricity are available. Figure 1.5 summarises the three requirements needed for 
successful control. 



Control concepts 5 

~J ity t o ~  
te and ) 
actions / 

,ii2  

~ t  a c t ~  
[ or to make 
I modifications that when applied ) 
\ to the system will result in the / 

desired behaviour (i) being obtained / 

Figure 1.5 The three elements needed for successful control design 

A major problem in control using a long term horizon is uncertainty of the long 
term accuracy of models, compounded by the likelihood of unforeseen events. That 
is to say, the possibility must be faced that, once uncertainty rises above a particular 
level, no meaningful control can be implemented and that policies that look ahead to 
anticipate future contingencies may call for immediate sacrifices that will never be 
repaid by the creation of more favourable future environments. 

Feedback control, in which an error initiates corrective action, can be used only 
where corrective actions take effect relatively quickly. It is clearly unsatisfactory 
to wait until electricity demand exceeds the maximum possible supply level before 
starting to build a new power station. On the other hand, it is usually perfectly feasible 
to control the speed of a motor by an error-driven feedback correction. 

None of the processes that we are called upon to control can be made to change 
its state instantaneously. This is because all processes have the equivalent of inertia. 
Suppose that we have the task of moving a large spherical boulder from A to B by 
brute force (Figure 1.6). 

Clearly, considerable initial effort must be expended to get the boulder rolling 
and a similar effort must be expended to bring it to rest. In the case illustrated, it 
will be all too easy to overshoot the target or to spend too long arriving there if any 
miscalculation is made. The difficulty of achieving control in this situation is entirely 
typical and occurs because of the energy that needs to be stored in and then removed 
from the boulder to allow the task to be achieved. Only when we possess a prior 
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initial position of boulder 

A 

required final position of boulder 

B 

Figure 1.6 The problem of moving the boulder 

quantitative knowledge of the energy storage mechanism can we hope to achieve fast 
and accurate control. 

A system with internal energy storage is called a dynamic system. Thus, we can 
see that one of our chief problems is to synthesise actions that, when applied to 
a dynamic system, will produce the response that we are seeking. 

1.3 What  is automatic control? 

Control theory was developed to support the emergent activity of  automatic control. It 
is therefore a useful motivation to turn our attention to automatic control. Historically, 
the discipline of  automatic control was concerned with the replacement of the human 
worker of  Figure 1.7 by the automatic controller of Figure 1.8. 

Although automatic control is nowadays a complex discipline, no longer primar- 
ily concerned with the replacement of  human operators, it is a useful starting point 
to consider what sort of  skills are necessary to move from an existing, manually 
controlled situation to a new automatically controlled situation, as in Figure 1.8. 

(1) A central idea of  control theory is the control loop. All control loops have the 
same basic form, regardless of  the particular application area. Thus, control 
theory uses an application-independent notation to convert all control problems 
into the same standard problem. We can consider that control theory concentrates 
on studying the universal situations that underlie all applications of quantitative 
control. 

In broadest form a control loop appears as in Figure 1.9. The decisions 
govern actions that are taken. The effect of  the actions is reported back by the 
information channel. Further decisions are taken and the loop operates continu- 
ously as described. A control loop provides an extraordinarily powerful means 
of control but, at the same time, the existence of the loop always brings the 
possibility of the potentially very destructive phenomenon of instability. 

(2) All control loops are error-driven, where error is defined as the difference 
between the behaviour that is desired and the behaviour that is measured. 

(3) An important performance measure for a control system relates to rate of error 
reduction. Often, performance is quoted in terms of the highest frequency that 
the control system can follow, when required to do so. 
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Figure 1.9 A control loop in its broadest form 
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(4) 

Control theory 

All control loops tend to become unstable as higher and higher performance is 
sought. A good understanding of  the topic of  stability is central to understanding 
control theory. 

1.4 Some examples of control systems 

Four control systems are illustrated in Figure 1.10. All can be seen to have the form 
of  Figure 1.11. A user, uninterested in the mechanics of  all this, will see the simpler 
view of  Figure 1.12. We refer to this single block (that has the control loop hidden 
inside) as the control system. 

The following further points are important: 

(5) Control system performance can only be meaningfully specified in relation to 
the (total) control system of  Figure 1.12. 

desired interest rate measured 
inflation / ] inflation 
rate • ? • economy [ rate central bank -~ 

steam flow 
measured 

desired ~ ] [ steam ] speed 
speed " ~ Governor " ] engine ] 

desired 
temperature inside 
building ~ heating 

controller 

hot water flow 

radiators 
and 

building 

measured 
temperature inside 
building 

desired • 
aircraft 
heading 

automatic 
pilot 

movement of 
control surfaces 

[ 
aircraft measured 

aircraft 
heading 

Figure 1.10 Some examples of particular control applications 
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Figure 1.11 The general form o fal l  the control systems in Figure 1.10 

desired 
behaviour 

measured 
behaviour 

Figure 1.12 A user's view of the control system of Figure 1.11 

(6) The control system designer almost always has to incorporate into the control 
loop an element whose intrinsic behaviour is largely outside his own influence. 
(For instance, the control systems designer may have little influence on the 
design of a building although later he will be called upon to design temperature 
control systems for it.) 

(7) To quite a large extent, the controller must neutralise adverse characteristics in 
the process, compensating for non-ideal process configurations and for short 
and long term perturbations and variabilities. 

(8) For (7) to be possible, the process characteristics must be known to some degree 
of accuracy and be reasonably constant. 

(9) Ideally [see (6)] the control system designer will ensure that the process has the 
best possible inherent behaviour, even with no control. The control design cycle 
is therefore roughly: 

(a) Decide on a necessary performance specification. 
(b) Quantify the performance of any system-to-be-controlled element that is to 

be included in the control loop. 
(c) Design, by one or other control design techniques, a controller so that the 

control system meets the specification of (a). 
(d) Construct, commission and test the control system. 

In the next chapter, we take these ideas further. 



Chapter 2 

Control design ideas: 
a non-mathematical  treatment 

2.1 Initial discussion 

In the previous chapter we saw that prerequisites for control design were broadly: 
a defined objective, a set of  available actions and a model that could be interrogated to 
establish which of  the available actions would best move the system towards meeting 
the objective. Now we add more structure to the concepts to put forward a possible 
design methodology (Figure 2.1). In this methodology, central use is made of  a system 
model. This model  is assumed able to rapidly calculate the expected behaviour of  the 
system when subjected to any particular action. 

set of all 
real world possible ~. 

actions system 

when the best possible action 
~ ,  has been found, it will 
X ~ b ~  applied to the real system 

one particular "-] ~ ] 
action is 
tried on the 
model 

desired 
behaviour 

I comparison with 
the desired behaviour 

the expected 
behaviour is 
given by the model 

J difference between 
S behaviours 

iteration is continued until the best 
possible action is obtained 

Figure 2.1 A possible methodology for control system design 
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desired behaviour 

best possible 
control actions 

system model 
(used inversely?) 

Figure 2.2 The idea of  using a system model inversely to synthesise actions 

Questions that immediately arise are: 

• In practice can a realistic model be produced? If  so how? 
• By what mechanism can two sorts of behaviour be compared? 
• Can the difference between desired behaviour and expected behaviour be 

meaningfully used to help the iteration towards the best possible choice of action? 
• How fast would the iterative procedure, involving the model, have to operate in 

order for the real world system to be realistically controlled? 

We answer none of these questions directly, preferring to state that Figure 2.1 remains 
largely symbolic. Meanwhile we ask a further question. 

2.2 Question: Can the best possible control actions be synthesised 
by some mechanism? 

If  the system model and the desired behaviour are accurately defined should it not be 
possible, in one pass, to synthesise the necessary actions shown in Figure 2.1 without 
interactive searching? 

This question is illustrated graphically in Figure 2.2. 

2.3 Requirements for an automatic control system 

If it is possible to synthesise the best possible actions continuously by some sort of  
algorithm, then we have arrived at automatic control. 

In the best known and simplest form of automatic control, the desired behaviour 
is specified as a requirement that the measured system response (say y) should con- 
tinuously and closely track a required system response (say v) that is input by the 
system user (Figure 2.3). 

Of  course, v may be constant or even always set equal to zero. In such cases, an 
automatic control system has the task of keeping a measured value of y always equal 
to the specified constant value of v, despite the presence of disturbing influences. 
These general requirements of an automatic control system are shown in Figure 2.4. 
Moving more towards the realisation of a practical system, Figure 2.5 results. 
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v = required system response 

y = measured system response 

Figure 2,3 An automatic control system may be required to force the measured 
response y to track a user-specified desired response as closely as 
possible 
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Figure 2.4 Requirements for an automatic control system 
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It is clear that the success of the scheme presented in Figure 2.5 depends on the 
disturbances w being measurable and on the existence of an accurate quantitative 
understanding of the system to be controlled, for otherwise the 'generator of con- 
trol actions' cannot be accurately constructed. (Notice that no use is made of any 
measurement of the response.) 

2.4 Automatic feedback control 

Automatic feedback control overcomes both the above problems (possible unmea- 
surability of disturbances, difficulty of obtaining a sufficiently accurate model) by 
being error-driven as shown in Figure 2.6. 

2,5 Diagrams illustrating and amplifying some of the concepts 
described so far and showing relationships to a software 
engineering context 

(1) Control theory is interested in systems behaviour and deals with generalised 
situations called systems. A system is a set of elements, interconnected by 
information links and existing within a system boundary outside which is the 
system environment. Figure 2.7 illustrates some of the rationale. 

(2) A broad task is to go from a statement of 'desired behaviour' to the synthesis of 
a system exhibiting that desired behaviour (Figure 2.8). 

(3) In more specific terms, control theory is first concerned with systems under- 
standing, secondly with influencing systems behaviour, and thirdly with 
designing systems to exhibit particular behaviours (Figure 2.9). 

V 

w disturbances 

comparator 

+ ~  generator ~ _ _  system 
of control to be 
actions controlled 

(controller) 

~ _ _ . ~  feedback 
loop 

Figure 2.6 An 'error driven system ': the feedback loop 
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Figure 2. 7 Some basic control ideas 

domestic temperature 
control system 

desired 
behaviour 

synthesise 
system to have 
desired behaviour 

Figure 2.8 The broad task of control design 

Virtually every important application of  control theory is closely embedded within 
a complex software engineering context. Without attempting to go into details the 
following concept diagrams illustrate some of  the interactions between control design 
approaches and the software context: 

(4) Once systems behaviour is considered, the questions arise: what types o f  
behaviour do we have in mind? How can behaviour be quantified? What  factors 
limit performance? (Figure 2.10). 
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understanding the 
behaviour of systems 

influencing the 
behaviour of systems 

designing systems that 
will exhibit a particular 
behaviour 

Figure 2.9 The sequence of objectives involved in a typical control project 

Figure 2.10 

How do we measure behaviour? 

What sorts of behaviour do we 
have in mind? 

What factors set limits to 
performance? 

Fundamental questions related to system behaviour and system 
performance 

(5) Elaborating on the points in Figure 2 10, we turn to points of  methodology. How 
can we find out what type of  system is really required? How can we turn this 
knowledge into a specification and then into a design? What tools are available 
to assist us? Figure 2.11 illustrates these points. 

(6) Elaboration of  the points in Figure 2.1l produces Figure 2.12. Here we 
see a stage called 'requirement capture' dedicated to establishing what the 
eventual user needs. Further stages o f  systems specification, system design, 
knowledge elicitation (aimed at feeding in particular expert knowledge) and 
data base design precede the writing of  code (i.e. programming) and the 
proving, commissioning and maintenance that are essential parts o f  all real 
applications. 

(7) Figure 2.13 is a re-run of  Figure 2.12 with a few enhancements. This figure 
illustrates how a user's conception of  the ideal system is modified by addi- 
tional enhancements as well as by restrictions suggested by a systems designer's 
expertise. The role of  CASE (Computer Aided Software Engineering) tools 
can be seen in the diagram. These tools allow systematic top-down design, 
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Figure2.12 System design from requirements capture to commissioning and 
maintenance 
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Figure 2.13 A more detailed view of system design showing the role of CASE tools 
and the place of verification using reverse engineering 

partitioning of  work tasks into manageable parcels, continuous checks on con- 
sistency and a graphical overview of the whole design project. The figure 
also illustrates how so called reverse engineering is used to check that the 
final codes are in complete and consistent agreement with the initial system 
specification. 



Chapter 3 

Synthesis of automatic feedback control loops: 
a more quantitative view 

3.1 Feedback loops: further discussion 

In automatic control a device called a controller issues commands that are physically 
connected to a process with the intention to influence the behaviour o f  the process in 
a particular way. The commands that will be issued by the controller in a particular set 
o f  circumstances are completely determined by the designer of  the controller. Thus, 
automatic control can be seen to be completely pre-determined at the design stage. 

The controller may be driven by time alone or it may be driven in a more complex 
way by a combination of  signals. In feedback control, the controller is error driven. 
That is, the controller receives a continuous measurement of  the difference between 
required behaviour and actual behaviour and its output is some function of  this error 
(Figure 3.1). 

In this type of  system, excellent results can be obtained in practice with very 
simple controllers indeed, even when operating under conditions where the system 
to be controlled is not well understood. Roughly speaking, we can imagine that the 
controller will keep on taking corrective action until the error is reduced to zero. 

controller 
error = v y output 

desired \ " controller measured 
value v _ \ [ ] ~ -operating system to resssDonse y 

i 

be controlled on error v-y 

~ ' ~  feedback 
loop 

Figure 3.1 A feedback  control loop 

Notice that the output o f  the controller is a function o f  error v - y. 
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comparator e u 

Figure 3.2 A feedback loop with the system to be controlled denoted G and the 
controller denoted D 

An alternative view of  the arrangement of  Figure 3.1 is that the user sees an artifi- 
cially enhanced system that has been synthesised to meet his wishes. I f  we represent 
the controller by an operator D and the system to be controlled by an operator G 
we obtain: 

System output = Gu ] 
Controller output = De 

Controller input = e = v - y 
(3.1) 

In feedback controller design, the task is to specify the controller, denoted by the 
operator D, so that in connection with the process, denoted by the operator G, in 
the format shown, a suitable overall behaviour will be obtained. We can imagine that 
the controller modifies the process characteristics in ways chosen by the designer. 

We next assume that there exists a desired hypothetical process H. By suitable con- 
nection o f  a controller D to the actual process, are we able to produce a configuration 
that behaves the same as H ?  

I f  we interconnect G and D as shown in Figure 3.2 and assume some benevolent 
mathematics that allows us to manipulate the symbols then, from the figure, 

y = GD(v  - y) 

y GD (3.2) 

v I + G D  

and setting 

H 
D -- (3.3) 

G(1 - H)  

will be found to accomplish the objective o f  making y/v equal to H. In other words, 
this choice o f  D does indeed make the synthesised configuration behave like the 
chosen hypothetical process H. 

Here we assume that well-behaved operators can be found to operate on the sort 
of  functions that exist in the control loop and possessing those other properties o f  
associativity and invertibility that are needed to make manipulation valid. (i.e. we 
assume that the operators G, D, H are elements in a group). 

Laplace transforms or other techniques can produce these operators for specific 
examples but, for the moment, it is sufficient to know that such operators exist. Then, 
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from the set of equations above, it is clear that 

y : [(1 + GD)-IGD]v (3.4) 

and the system represented by the operators in the square brackets can be synthesised 
by choice of D to behave as the user requires. 
We note and ask: 
D contains G -1, the inverse of  the plant: 

• This may be of high order. 
• Is it (G) known? 
• Does it (G) stay constant? 
• If  G changes by (say) 10% will control become very poor? 

(i) Can our requirements be adequately represented by an operator H?  
(ii) How is H chosen? 

(iii) Is it not disturbing that H is not in any way dependent on G? For instance, can 
we turn a low-performance aircraft (G) into a high-performance aircraft (H) 
simply with the aid of a clever algorithm? 

(iv) Does D turn out to be a possible, buildable, robust, practical controller? 

Comment 
Limits on attainable performance are set by the constraints in the process. These 
constraints are not at all modelled by the (linear) operator G, nor are they otherwise 
fed into the design procedure. 

A key point is: if H is chosen too ambitiously then D will simply drive the process 
G into saturation. 

In practice, a particular process G can nearly always be marginally improved to 
(say) a faster responding H whereas it will rarely be able to be improved by several 
orders of magnitude. 

The chief difficulty therefore lies in specifying H -  How ambitious can we be? 

3.2 W h a t  sorts  o f  contro l  laws  are there?  

It would appear reasonable that an infinite variety of control laws might be possible 
including some highly exotic versions that would need considerable computer power 
for their implementation. However, we shall show that if the control law is restricted 
to be linear, then the range of possible control laws is very restricted indeed. 

Without much loss of generality, we may assume that the control law is to be 
implemented by an idealised computer that occupies the 'controller' position in 
Figure 3.1. 

The output of  the controller at any instant of time can be any function of the 
current and/or previous error signal that is read into the controller. (Recall that the 
system is operating in real time and that, therefore, future values of error cannot, by 
definition, be available to the controller.) 
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If linearity is now insisted on in the controller, then the possible control laws are 
severely restricted to be of the form: 

Present output of the controller = Some multiple of the present input 
+ Multiples of the previous inputs 
÷ Multiples of the previous outputs 

In other words, the present output of the controller is constrained to be just a weighted 
sum of present and past values of the input to and the output from the controller. 

Corollaries 

(i) More 'intelligent' control laws may contain models of the process to be con- 
trolled and, using these models, for instance in rapid iterative simulation mode, 
they may calculate and produce a control output. Such control laws are not 
linear and theoretical calculation of their expected performance is therefore 
a difficult task. 

(ii) The restricted class of control laws that can be implemented linearly excludes 
many optimal control strategies. This is why so often optimal control solutions 
appear as pre-specified (open loop) functions of time that cannot be converted 
into automatic feedback controllers except in a minority of cases. 

(iii) Specifically non-linear controllers have found very little application. This is 
surprising since most processes that have to be controlled are fairly non-linear 
and it would seem that non-linearity in the process could surely be cancelled by 
'opposing' non-linearities in the controller to give overall good control. Also, 
Nature is a well-known user of non-linear devices in most of its control applica- 
tions, in, for instance, the human body, and we might reasonably expect control 
design to follow in this direction. 

3.3 H o w  f e e d b a c k  c o n t r o l  w o r k s  - a p r a c t i c a l  v i e w  

The illustrations use temperature control and foreign currency exchange control but 
the results are valid for any feedback loop. 

Block G (Figure 3.3) is a heating process. It receives an input of 'fuel flow' and 
produces an output 'temperature'. 

Block D (Figure 3.4) is a motorised fuel valve. When the control signal is zero, 
the valve produces a fuel flow u0. When the control signal is positive the fuel flow 
is increased as shown in Figure 3.5. The larger the control signal, the steeper the rate 

fuel f low ~ - ]  temperature 
O I, 

Figure 3.3 A heating process viewed as an input-output device 
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control signal ~ fuel flow 

A controller for connection to the heatingprocess 

time 

time 

Figure 3.5 The characteristic of the controller D: how the control signal causes 
changes in fuel flow 

of increase (Figure 3.6). Conversely, negative control signals produce decreasing 
fuel flows. 

If now the feedback loop in Figure 3.7 is formed, the input to the motorised valve D 
is the difference between the temperature that is desired and the actual (measured) 
temperature. 

Assume that the measured temperature is 80 °C and the desired temperature 
is IO0°C. 
Then the input received by the valve D will be 100 - 80 = 20. This is a positive 
signal and valve D will respond by increasing the fuel flow. Heating process G, on 
receiving an increased fuel flow, will respond by increasing its temperature so that it 
will climb above 80 °C. The error will decrease and the fuel flow will settle eventually 
at that value that brings the measured and desired temperatures to be equal, i.e. to 
a zero error condition. The operation just described is illustrated in Figure 3.8. 

Notice carefully that the temperature will arrive exactly at the desired value regard- 
less of the particular characteristics of heating process and valve. For instance, even 
should the heating process suddenly and unexpectedly fall in efficiency (thereby 
requiring more fuel to achieve the same temperature) the feedback loop will compen- 
sate perfectly for this change since the fuel flow will be increased automatically to 
whatever level is required to give exactly the desired temperature. Here we see the 
great attraction of feedback control - an imperfectly understood process, even one 
subject to large unpredictable changes of basic characteristics, can be satisfactorily 
controlled using a control law that is specified in the vaguest of terms. 
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Figure 3.6 Further illustration of the characteristics of the controller D 
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Figure 3.7 A feedback loop in which the motorised valve is connected to the heating 
process 

Before we move on to consider the implications, let us illustrate the feedback 
control principle at work in a different, much wider context (Figure 3.9). Here let 
the element G be an economic element whose input is UK bank rate (%) and whose 
output is the exchange rate, number of US dollars per pound Sterling. 

Assume that the Chancellor has in mind a desired exchange rate, say $1.5 against 
the pound. It is 'generally accepted' that increasing the UK interest rate will increase 
the exchange rate. The Chancellor, D, in the feedback control loop, therefore manip- 
ulates the interest rate to whatever level is necessary to achieve the desired exchange 
rate (Figure 3.10). 

Of course, the Chancellor does not ramp the exchange rate (as in the earlier fuel 
rate example) - rather he moves it in a succession of steps to form a staircase function 
that is all too familiar (Figure 3.11). Notice again that (fortunately) the Chancellor 
does not need to understand how the economy works to attain the exchange rate that 
he requires, using the principle of feedback. 
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control 
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Figure 3.10 
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The economic element under closed loop control by the Chancellor 

The feedback principle works extremely well provided that the available actions 
do not encounter constraints that limit their magnitudes. In the case o f  temperature 
control, there will always be some limit on fuel flow rate. In the case of  exchange rate 
control, there will always be restraints, often of  a political nature, on the magnitude o f  
the interest rate that can be used. Linear systems have no such constraints and hence 
linear control theory can never deal satisfactorily with the inevitable boundedness of  
all real control actions. 
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Figure 3.11 A typical interest rate profile resulting from the Chancellor's actions 

We now return to the main theme of practical feedback control. We recall that the 
approach has the considerable merit that it offers exact control of  vaguely specified 
and possibly changing mechanisms, using quite loosely specified control actions. 
The underlying rough idea is that the action in the control loop keeps on increas- 
ing/decreasing to whatever level is needed to make the error zero. So long as the error 
is non-zero, further action is taken in the direction that will reduce the error. When 
the error reaches zero, the value of the controlled variable is, by definition, equal to 
the specified desired value. 

We have seen that an acceptable level of control can be obtained for imper- 
fectly understood processes using vaguely specified actions. However it is now time 
to ask: 

(i) How long does it take for control to be achieved and what is the nature of  the 
response curve? 

(ii) Can a 'best possible response' be defined and, if so, how can it be achieved? 
(iii) In a particular case, what sets the limit on performance? 
(iv) What if the desired target is not constant (a moving target) or there are external 

influences outside our control? 

(i) Responses may range across the type of behaviour shown in Figure 3.12. It is 
clear that, for many applications, the nature of the response and the time taken 
to achieve control will be critical, yet these aspects cannot be predicted in the 
absence of quantitative data. 

(ii) A 'best possible response' is only meaningful in general for problems where 
constraints are present. By definition, these problems do not belong to linear 
control theory. 

Linear control systems can, by definition, use signals of  any magnitude to produce 
responses that, in the limit, are instantaneous- such responses are clearly unattainable 
in practice. The difficulty is overcome in practice as follows. A required response that 
is realistic for the application but that is not expected to violate constraints is aimed for. 

If  this rather empirical approach shows that constraints would be violated, the 
problem has to be altered. In an engineering application more powerful motors, 
stronger practical components or additional amplifier stages may be needed. 
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time 

Figure 3.12 Typical transient responses ranging from highly oscillatory to sluggish 
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Figure 3.13 An (ideal)feedback controller will synthesise an equal and opposite 
signal to neutralise the effect of an incoming disturbance 

The valuable point emerges: The limits of control performance are the constraints 
within the system; and these are not at all represented in linear control theory. 

We have now reached the stage where 'imported detail' begins to crowd in on us, 
attempting to force us away from principles into a discussion of technique. At this 
point we are content to say that, even under conditions of moving targets, external 
influences and other factors yet to be discussed, viable feedback control systems can 
usually be designed and implemented. 

3.4 General conditions for the success of feedback 
control strategies 

By the nature of  feedback control, corrective action can only begin once an error has 
been detected. Therefore, close control will only be possible in those cases where the 
rate of corrective action can at least match the rate of  disturbance generation. This 
idea, of course, soon leads to requests for high bandwidth of control loops to allow, 
in one way of looking at it, the control loop to successfully synthesise a signal equal 
and opposite to the disturbance signal (see Figure 3.13). 

In many cases, it is not possible to design a closed loop with a high enough band- 
width, and then feedback control has to be abandoned or relegated to a secondary role. 
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3.5 Alternatives to feedback control 

Alternatives to feedback control are: 

(i) Preprogrammed control: Here a standard strategy, recipe or sequence of  controls 
is calculated in advance and is implemented without regard to any signals that 
come from the system during the period of  control. 

(ii) Feedforward control: Here the disturbing signals are measured and necessary 
corrective actions are calculated and implemented with the idea of  eliminating 
error before it can occur. This approach requires that the disturbances are mea- 
surable independently (as opposed to the feedback approach which allows the 
error to be a measure of  received disturbances) and that the necessary control 
actions are accurately calculable. 

(iii) Prediction followed by control: Here prediction of  future conditions, eitherbased 
on extrapolation algorithms, or on stored historical records, is used to allow the 
best possible positioning of  a low bandwidth control system. A classical case 
is in electricity generation where rapidly changing consumer demand follows 
a reasonably predictable daily and seasonal pattern, thereby allowing the cum- 
bersome process (time constant of  several minutes) of  bringing new generators 
onto the grid to be scheduled to match load predictions rather than attempting 
an unsuccessful feedback control in which the slow process of  bringing new 
generators on-stream attempts to match the very much faster rate of  change of  
consumer electricity demand. 

Note: Source material and suggestions for further reading to support the topics of this chapter will be 
found in Chapter 19. 



Chapter 4 

How the Laplace transform greatly simplifies 
system representation and manipulation 

4.1 Laplace transform techniques 

Many useful techniques depend on the Laplace transform. The Laplace transform of 
a function f (t) is denoted sometime s by £ { f (t) } and sometimes by F (s). The inverse 
Laplace transform of F(s) is denoted sometimes by £- l{F(s)}  and sometimes by 
f ( t ) .  Figure 4.1 makes the relation clear; s is a complex variable whose role is defined 
by eqn. 4.1. 

4.2 Definition of the Laplace transform 

By definition 

~ {f(t)} = e x p ( - s t ) f ( t )  dt 

Examples 

(1) 

(4.]) 

Let f ( t )  : a constant k, and let R(s) denote the real part of the complex 
number s 

fo (k) = e x p ( - s t ) k d t  = - 1 / s  exp(-st)  
o 

= 0 - ( - k / s )  = k/s 

provided that R(s) is positive (for otherwise the integral does not exist). 

f(t) -~ F(s)=~{fit)} 

Figure 4.1 The Laplace transform operation 
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(2) Let f ( t )  : exp(at) 

£ {exp(at)} = e x p ( - s t )  exp(at) dt 

1 s ) t  o 1 (a - s) exp(a - s + a 

This will be true provided that R(s) > a. 
The chore of  calculating Laplace transforms of  particular time functions and the 

converse problem - calculating the time function, by inverse Laplace transformation, 
corresponding with a particular Laplace transform - can be avoided by the use of  
software packages or tables of  transform pairs. Small tables are to be found as appen- 
dices in many introductory control textbooks. A larger set o f  tables can be found 
in McCollum and Brown (1965) and a very comprehensive set in Prudnikov et al. 
(1992). 

4A Convergence of the integral that defines the Laplace transform 

It is quite typical, as in the last example, for the integral that defines the Laplace 
transform to be finite (and hence defined), only for restricted values of  s. However, there 
seems to be a tacit agreement in the teaching of  control theory to avoid any discussion 
of  the distracting question: what is the significance of  the region of  convergence of  the 
integral that defines the Laplace transform ? 

For example, let a = 2 in the transform 1 / ( s + a ) that we have just derived. Then it 
is clear that the transform is only defined and valid in the shaded region in Figure 4.2 
where the real part of  s is strictly greater than 2. However, later in this chapter, we 
shall see that, for this transform, the value of  s for which s + a = 0 is highly significant 

i : /  
y:i/ 

/ [  /2t%:  ,Z-2 
yZ // 

Figure 4.2 The transform 1/(s + 2) is only defined in the shaded region, yet  
the point s -- ( - 2 ,  O) is the one o f  interest and the transform is 
universally used at that point without further question 
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(i.el thepoint s = (-2,0)). We, in common with the whole control fraternity, blithely 
use the transform at the point s = (-2,  0) where it is undefined. 

Notice also that the re~ion in which the integral converges may be empty. For 
example, the function exp(t ~) has no Laplace transform for this reason. 

4B Problems with 0-  and 0 + 

(i) Anyone who has used Laplace transforms to solve differential equations will be 
used to obtaining solutions such as 

y(t) = y(O) exp( ' t )  

where by y(O) is meant y (0 +) which has to be calculated independently. One is expected 
to know y(O+), but y(O +) is really part of  the solution that is to be determined. Clearly 
y(O +) will be different from y(O-) only when there is a discontinuity at the origin. Such 
a situation occurs for instance in calculating the step response o f  a system containing 
a differentiator The difficulty can sometimes but not always be overcome by :exercising 
common sense. 
(ii) A rigorous examination o f  the Laplace mechanism applied to a delta function 
unearths problems again due to the 0- ,  0 + phenomenon. Taking the phenomenon rig- 
orously into account shows that L{8(t)} = O, rather inconveniently, compared with 
L{8(t)} = 1, that we universally use. Zadeh and Desoer (1963) discusses the Laplace 
transform rigorously. 

4.3 Use of the Laplace transform in control theory 

(1) Consider a system (Figure 4.3) that receives an input u(t) and in response pro- 
duces an output y (t). The response y (t) is determined by the nature of  the input signal 
u(t)  and by the nature of  the system. 

Suppose that g(t)  is the response of  the system to a unit impulse applied at time 
t = 0. Then the response to any other input u is given by the convolution integral 
(see interlude 4C for further insight) 

f0 t y(t)  = g(t - r )u ( r )  d r  (4.2) 

Figure 4.3 

output = response of the 
o input system i, system =y(t ) 

A simple input/output system 
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However, life is much simpler if we use the Laplace transforms of u(t) and g(t) to 
yield u(s), G(s),  respectively, for then, equivalent to eqn. 4.2, we have 

y(s)  = G(s)u(s)  (4.3) 

i.e. transform-domain multiplication is equivalent to time-domain convolution. 
There is an additional advantage in that inverse transformation from y(s) back 

to y(t)  is often not required - many interesting and significant questions can be 
answered most efficiently by reference directly to y(s).  The equivalence between 
eqns. 4.2 and 4.3 is very significant. Refer to Section 4.4 for an alternative viewpoint. 
Refer to Dorf(2001) for a more detailed derivation. 

4.4 The concept of transfer function 

The transfer function of a dynamic system with input u(t) and output y(t)  is defined 
to be the Laplace transform of y(t)  under the condition that u(t)  is a unit impulse 
applied at time t = 0; or, more generally applicable in practice: 

G(s) = y ( s ) /u ( s ) ,  valid for any u, y pair whose transforms exist. 

(2) Consider next the interconnected systems shown in Figure 4.4. Let the two systems 
have impulse responses gl (t), g2 (t), respectively. 

Then y(t)  f0 t = g2(t - r )u ( r )  d r  

f0 f0 = g2(t - r) gl( t  - p ) v ( p ) d p d r  (4.4) 

However, using Laplace transformed signals and transfer functions (i.e. Laplace 
transformed impulse responses), we obtain, instead of eqn. 4.4, 

y(s)  = G2(s )Gi ( s )v ( s )  (4.5) 

4.5 System simplification through block manipulation 

Block diagrams of any size and complexity can always be reduced to a single block 
by successive application of three rules that are summarised in Figure 4.5. The rules 

Figure 4.4 

sys,em, sys,em2 ] IP 

Two systems connected in series 



(1) o~ s) ~ y(s) _-- 

(2) c~ s) ~ y(s) 
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ov(s) [ Gz(s)Gl(s)] y(s), 

ov(s) [Gl(s)+ G2(s)] y(s)) 
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F i g u r e 4 . 5  Three basic configurations and their equivalent single block 
representations 

are easily derived as follows (rule 3 of Figure 4.5): 

e(s)  ---- v(s)  - y (s ) ,  y ( s )  = G(s ) e ( s )  

y ( s )  ---- G ( s ) v ( s )  - G ( s ) y ( s ) ,  y(s)(1 + G(s ) )  = G ( s ) v ( s )  

G ( s ) v ( s )  
y ( s )  -- - -  

1 + G(s) 

Complicated block diagrams can with advantage be reduced with the aid of Mason's 
rules (see Dorf, 2001). 

4.6 How a transfer function can be obtained from 
a differential equation 

If a differential equation 

dn-1 dny + an-1 Y dru 
dt----; ~ + . . . .  br dt---;- + "'" 

is Laplace transformed, we obtain 

(s n + a n - i s  n -  1 + . . .  )y  (s) + terms depending on initial conditions 

-- (brs r + . . .  )u(s)  + terms depending on initial conditions. 

Transfer function analysis, but note not differential equation solution by Laplace 
transforms, assumes that initial condition effects have died away and that the output 
is a function of the input only. In that case, the transfer function corresponding with 
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the differential equation is 

y(s) brs r + ' ' "  

U(S) S n "~ an-1  sn -1  

4.7 Poles and zeros of a transfer function 

Any value of the complex variable s for which G(s) = 0 is called a zero of G(s). 
Any value p of  the complex variable s that satisfies s ~ 0 ~ G(s) --> co is called 
a pole of  G(s). 

I f  G(s) can be expressed G(s) = P(s ) /Q(s )  then the zeros are the roots of the 
equation P (s) = 0 while the poles are the roots of the equation Q(s) = 0. In a pole-  
zero diagram, zeros are denoted by the symbol 0 and poles by the symbol x in the 
complex plane. 

The mathematical underpinning of the theory of transfer functions is provided 
by complex variable theory. Particularly relevant aspects of complex variable theory 
are Cauchy's integral theorem and Cauchy's integral formula, Laurent series and the 
associated concept of  residues [These aspects can be pursued in Brown and Churchill 
(1996)]. 

4.8 Understanding system behaviour from a knowledge of 
pole and zero locations in the complex plane 

The system to be investigated (Figure 4.6) has a single input u and a single output y. 
Suppose the transfer function of the system is G(s) = P(s ) /Q(s)  where P, Q are 
polynomials with real coefficients in s. Since 

P(s) 
y(s) : G(s)u(s) -: u(s) 

Q(s) 

we can write 

Q(s)y(s) = P(s)u(s) 

Evidently Q(s) governs the nature of  the system's response to initial conditions and 
hence also its stability (since a response to initial conditions that dies away to zero 
belongs to a stable system and a response to initial conditions that grows with time 
belongs to an unstable system). 

Conversely, P(s) affects the manner in which the system responds to external 
inputs. 

Figure 4.6 A simple input~output system 
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Figure 4. 7 The meaning of pole locations 

Meaning of pole locations 
Figure 4.7 summarises some of the most important points related to the question: 
what is the relation between transfer function pole locations in the complex plane and 
the time-domain behaviour of the system? 

Figure 4.7a shows how the rate of change of transient solution increases as the 
pole to origin distance increases; Figure 4.7b shows how any pole in the right half 
plane indicates instability; Figure 4.7c shows the split of the complex plane into 
the real line (poles on the real line indicate exponential responses) and the remainder 
(when poles indicate oscillatory responses); and Figure 4.7d shows how poles nearest 
the origin 'dominate' the response. 

Zeros also have an effect on system response. Figure 4.8 gives examples of pole- 
zero diagrams and their associated system step responses. 
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Figure 4.8 Continued 
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Figure 4.8 Examples of pole~ero diagrams and their associated step responses 
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4.9 Pole placement: synthesis of a controller to place the closed 
loop poles in desirable positions 

Suppose a given system G has poles as shown in Figure 4.9, but it is required that the 
poles are actually at the positions shown in Figure 4.10. Then, preceding the given 
system by an element D having pole-zero diagram Figure 4.11 will cancel the poles 
of G and produce the required poles. This technique is called pole-placement. 

Notice carefully that the unwanted poles of G are not removed- rather their effect 
on the external behaviour is cancelled out by the zeros of D. 

X X 
complex 
plane 

Figure 4.9 Presumed initial position of system poles 

complex 
plane 

Figure 4.10 The required position of the system poles 

x 

0 0 complex 
plane 

X 

Figure 4.11 Poles and zeros of a synthesised system (controller) that when 
connected in series with G will 'move' the poles to the required 
positions 
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Two difficulties can arise when pole cancellation is used. 

Cancellation may not be exact, or, if initially exact, may not remain so. This 
is particularly important where the poles whose cancellation is intended are 
unstable poles. 
A system in which poles have been cancelled out by coincident zeros only 
appears to have a simple form. Internally, the structure representing the cancelled 
terms is still present although it does not affect, nor can it be affected by, outside 
events. The redundant internal structure leads to difficulties and anomalies, 
particularly in those cases where matrix techniques are to be applied. This topic 
is discussed again in Sections 7.10, 7C and 7D. 

4.10 Moving the poles of  a closed loop system to desirable 
locations - the root locus technique 

Consider the transfer function system (Figure 4.12): 

C 
G(s) = 

(s + 1)(s + 3) 

which has poles at s = - 1 , s  = - 3 .  I f  the same system is connected in a closed 
loop (Figure 4.13) then, as shown in Section 4.5, the overall transfer function for the 
configuration is 

/( ) G(s) _ C 1 + 
1 + G(s) (s + 1)(s + 3) (s + 1)(s + 3) 

C 

(s + 1)(s + 3) + C 

)( )< 
complex 
plane 

Figure 4.12 Poles ofG(s)  = C/[(s + l )(s  + 3)] 

+ (S+ 1) (s+3) I "~ 

Figure 4.13 G (s) connected into closed loop 
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/ \  r l ~  
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Figure 4.14 A root locus diagram for G(s), showing how the closed loop poles 
move with increasing values of C 

The poles of  the closed loop configuration are found by equating the denominator of  
the transfer function to zero. In this case, the equation to be solved is 

(s + 1)(s + 3) + C = 0 

The solutions are s -- - 2  4- ~/1 - C. 
For C < 1 the poles are real, unequal 

C --- 1 the poles are real, equal 
C > 1 the poles are complex conjugates. 

A diagram (see Figure 4.14) showing how the poles move with changing C is 
called a root locus diagram. With the aid of  the root locus diagram, we can decide 
on the value of  C that will result in the closed loop poles being in desirable positions 
in the complex plane. Chestnut and Mayer (1959), chapter 13, has many examples 
o f  root locus configurations. More recent references, such as Dorf  (2001), do not go 
into such detail but will be adequate for many purposes. 

4.11 O b t a i n i n g  the  transfer  func t ion  o f  a proces s  f r o m  e i ther  
a f r e q u e n c y  r e s p o n s e  curve  or  a t rans ient  r e sponse  curve  

A frequency response curve is a curve that illustrates how a system's steady state 
response to sinusoidal signals varies as a function of  the frequency of  those signals 
(frequency response is discussed in Chapter 5). 

A transient response curve is a curve that records a system's behaviour as 
a function of  time immediately after the application of  a stimulus to the system. 

A non-minimum phase system is a system whose transfer function has one or more 
zeros in the right half  complex plane (the reasons for the name and some discussion 
can be found in Chapter 7). 

Experimental tests may produce frequency response curves or transient responses 
and these may need conversion to transfer functions to start design in the pole-zero 
domain. (Truxal (1955), p. 345 et seq., has a masterly and detailed treatment of  these 
topics - highly recommended.) 
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(1) Obtaining a transfer function f rom a given frequency response curve 
The subject of filter synthesis tackles the problem in great detail (Guillemin (1957)). 
However, for control purposes, the problem is simpler and, in particular, a transfer 
function that has the desired magnitude response is likely also to have the desired 
phase angle characteristics. (In fact, for minimum phase transfer functions, the phase 
characteristic is completely determined by the gain characteristic [see HW Bode cited 
in Truxal (1955), p. 346].) 

Thus if the magnitude characteristic can be approximated by straight line seg- 
ments, then an approximate transfer function may be quickly produced using 
(inversely) the rules for straight line sketching of Bode diagrams (Dorf, 2001). 

(2) Obtaining a transfer function from a transient response curve 
Let the test signal be u (t) and the resulting transient response be y (t), then the transfer 
function 

~{y(t)} 
G ( j w )  -- 

~'{u(t)} 

where ~ indicates Fourier transformation. 
In the days of 'hand computation', ingenious methods were devised to 

approximate the necessary Fourier transformation. Some of these methods are still of 
interest since they give insight into how the shape of a transient curve actually carries 
the transfer function information. For instance, Guillemin's technique (see Truxal 
(1955), p. 379) involves approximation of the transient response by segments of 
polynomials, followed by repeated differentation, resulting in a finite set of impulses 
from which the transfer function is written by inspection. 

4 C  C o n v o l u t i o n  - w h a t  i t  i s  

Let the system of  transfer function G(s) have the response g(t) to a unit impulse 
(Figure 4.15). The response to any other sort o f  input can then be visualised as the 
response to a train of  impulses that approximates the function (Figure 4.16). 

Any one of  the individual impulse response curves in Figure 4.16c can be expressed 
as u(r )g(t - ~ ), where r is the time o f  application o f  the impulse. Linearity allows us 

(a) 

magnitude 

time 

(b) 

time 

Figure 4.15 a A unit impulse at I = 0 
b The response G( t )  o f  a system to a unit impulse 
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(a) input 
function u 

time 

(b) approximated (c) 
input function 

y[ irnsd~iindUe~limpulse 

time time 

Figure 4.16 a 
b 
c 

A ramp input 
A ramp input approximated by impulses 
The response o f  a system to the individual impulses o f ( b )  

to say that 

£ y(t) = u(r)g(t  - r) dr 

and this expression, unpopular amongst students, is called the convolution integral. 
We can avoid convolution or, more correctly, allow the Laplace transform to take 

care o f  it, as follows: 

Let y(t) = u(t) • g(t) 

where • indicates convolution. 
Then, by the properties o f  Laplace transforms 

y(s)  = u(s)G(s)  

and 

y(t) = ~ - 1  {u(s)G(s)} 

In other words, transform multiplication corresponds to convolution o f  time functions. 
To complete the discussion, we illustrate the use o f  the transform method to calculate 

the response o f  a system to a stimulus. 
Let the system have the impulse response g(t) = e x p ( - t )  (this implies G(s) = 

1/(s + 1)), and assume the input u is a ramp function, i.e. u(t) = t, implying u(s) = 
1/ s 2. Then 

(obtained by the use o f  partial fractions). Finally, inversion produces 

y(t) = t - 1 + e - t  
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4 .12  D e t e r m i n a t i o n  o f  t r a n s f e r  f u n c t i o n s  b y  c r o s s - c o r r e l a t i o n  

The cross-correlation of functions u(t)  and y( t )  is given by 

Ruy(r) = lim u(t  - r )y( t )  dt  
T ---> oc 2"T T 

If u is the input and y the corresponding output of a system G, then 

y( t )  = g ( r ) u ( t  - r) dr  

And after combination of the two expressions and some manipulation, we obtain 

f? Ruy(r )  = g ( x ) R u u ( r  - x ) d x  
o o  

where Ruu is the autocorrelation function of the signal u. 
Under the special condition that the signal u(t)  is white noise, whose 

autocorrelation function is an impulse, the cross-correlation function Ruy(r)  is the 
system's impulse response and the Fourier transform or Laplace transform of this 
function is the system's transfer function. 

4D Calculation of resonant frequencies from the pole-zero diagram 

System responses can be calculated from the pole-zero diagram using approaches 
that are well described in, for  example, Maddock (1982). These approaches are not 
really competitive as numerical algorithms but they can be very instructive. Thus, 
Figure 4.17 has been drawn to illustrate resonance in a second order system - res- 
onance occurs when the product ab o f  the lengths a, b in the figure is a minimum as the 
arbitrary point p on the vertical axis (representing frequency) is varied. The calculation 
for  the minimum value is carried out beneath the diagram, resulting in a formula for  
the resonant frequency. 

We define 

J = ( r  2 + ( h  w)2)(r 2 + ( h + w )  2) 

Resonance occurs when ab/s minimum, i.e. when (ab) 2 = J is minimum: 

d J  = (r 2 + h2 _ 2hw + w2)(2h + 2w) 
dw 

(-2h + 2w)(r 2 + h 2 + 2hw + w 2) 

= r 2 + w 2 _ h 2 

Thus, the resonant frequency wr must satisfy 

o9 2 = h 2 r 2 

ogr = ( h2  --  r 2 )  1/2 
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Figure 4.17 

system \lb __l 
pole r 

Construction in the complex plane f o r  the graphical determina- 
tion o f  resonant frequency 

Now, damping factor ( satisfies 

r = COn ( (since ton is a vector from origin to pole) 

h = O~n~/1 - (2 

hence 

09 2 = - w 2 (  2 + o~2(1 - ¢2) 

from which 

Wr = wn~/l - 2( 2 
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4E Derivation of a formula for damped natural frequency 

Following the application of a step input, the output of a stable system having a pair 
of complex poles oscillates at a frequency o0d within a decaying exponential envelope. 
o0d is called the damped natural frequency. Let p be a vector from the origin of the 
complex plane to one of  the system poles, then (see Figure 4.18). 

j[o 

~ ~ 1 1  - P !d 

t q 

× 

Figure4.18 Construction in the complex plane for  the determination o f  
damped natural frequency 

Undamped natural frequency O)n is numerically equal to the length of the vector p. 
Damping factor ~ is the cosine of the angle that the vector p makes with the negative 

real axis. 
Damped natural frequency is given by the length of the projection of the vector p 

onto the imaginary axis. 
Then referring to Figure 4.18, 

p2 = q2 + o02 

and 

q = Wn(, p = Wn 

therefore 

o0d = O)n~l -- ~2 
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4F The root locus of  a system with open-loop poles and zeros 
located as in Figure 4.19 will  include a circle centred on the 
zero 

-3 -2 -1 
© × × 

complex 
plane 

Figure 4.19 The pole-zero diagram o f  the second order system under study 
in this section 

The closed loop transfer function o f  the system shown in Figure 4.19 is 

C(s + 3) 

(s + 1)(s + 2) + C(s + 3) 

or (for ease o f  manipulation), putting s = p - 3, to move the origin to the point s = -3 .  
The characteristic equation is 

p2 + ( C -  3)p + 2  = 0 

This is the equation o f  a circle, centre ( - 3 ,  0), radius 2. To appreciate this, solve the 
characteristic equation, obtaining 

R ( P ) = T ,  I ( p ) =  - 

~/R(p) 2 + I(p) 2 = ,,5 

Here 1L I denote real and imaginary part respectively. 

Note: Source material and suggestions for further reading to support the topics of this chapter will be 
found in Chapter 19. 



Chapter 5 

Frequency response methods 

5.1 Introduction 

Frequency response methods have a physical explanation that is readily understand- 
able without any mathematics. In addition the methods are design-oriented, link easily 
between practical results and differential equation methods, and have been proven to 
work well in many practical design situations. 

The 'home territory' for frequency response methods has traditionally been in 
servo-mechanism, process control and aerospace applications, and they have been 
rather resistant to applications outside these areas. 

5.2 Design using frequency response methods - initial explanation 

Frequency response methods have a distinguished history with Harold Nyquist (1932) 
and Harold Bode (1945) being credited with early fundamental work that remains 
relevant. 

Control design in the frequency domain involves the following basic ideas: 

(i) The performance of a system H that is to be synthesised may be approximately 
characterised by its bandwidth, i.e. by the range of frequencies to which it will 
respond. 

(ii) The bandwidth of any process G that is to be controlled may be measured 
experimentally or calculated analytically by straightforward means. 

(iii) The necessary frequency characteristics of a controller D may be determined 
graphically from information on G and H, such that the performance in (i) is 
obtained. 

(iv) Sufficient stability of the resulting control loop is easily taken care of as part of 
the design method. 
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i ~ I~1 
inputS- l "(+i°utpu 

I I 

Figure 5.1 A linear system consisting of a gain and integrator 

5.3 Frequency response of a linear system 

A linear dynamic system consists mathematically of  the (repeated) operations: 
multiplication by a constant, differentiation, integration and summation, and of no 
other types of operation. Therefore the response of a linear system to a sinusoid must 
necessarily be also sinusoidal; wave shape and frequency both being invariant under 
linear transformation. 

Illustration: A linear system has the configuration shown in Figure 5.1. The input 
to the system is multiplied by a gain of 3 in the upper arm. It is integrated in the 
lower arm and the two signals are added to become the output. Thus, if the input is a 
sinusoid of unit amplitude and frequency ¼ rad/s (i.e. the input is the signal sin ¼ t) 
then the output will be 

3 sin t /4 + f sin t /4 dt = 3 sin t /4 - 4 cos t /4 

= 5 ( 3 s i n t / 4 -  4 c o s t / 4 )  

= 5(cos c~ sin t /4 - sin u cos t/4) 

= 5 sin(t/4 - o0 (5.1) 

where ~ = cos -1 3, and we confirm that the signal remains sinusoidal of the original 
frequency, but that the amplitude has changed and that there is a phase shift ~ between 
input and output sinusoids. 

By the frequency response of a system we mean a table or graph showing the 
output amplitude and phase difference, as a function of frequency, when a sinusoid 
of unit amplitude is applied to the system (it being assumed that all transient effects 
have died away before output measurements are taken). 

5.4 The Bode diagram 

The Bode diagram allows frequency response information to be displayed graphically. 
The diagram (Figure 5.2) consists of  two plots, of magnitude and phase angle, both 
against frequency on the horizontal axis. 
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resulting magnitude 
of output sinusoid 

phase angle between 
ng sinusoids 

applied frequency 

Figure 5.2 The form of a Bode diagram 

zero ~ + 
input 

Figure 5.3 A block of transfer function G with unity feedback 

5.5 Frequency response and stability: an important idea 

If, for some particular frequency co, the block G has unity gain and - 180 ° phase shift, 
then the closed loop system shown in Figure 5.3 will be in continuous oscillation at 
frequency co. 

Explanation: A sinusoid of frequency w, once input to the block G, will be subjected 
to two phase shifts of  180 ° (one at G, one at the comparator [multiplication by - 1  
and phase-shifting by 180 ° having the same effect on a continuous sinusoid]) and will 
pass repeatedly around the loop without attenuation, since the loop gain at frequency 
co is unity. 

In practice, special log-linear axes are used for Bode diagrams with frequency 
on a logarithmic scale and magnitude not plotted directly but only after conversion 
to decibels (dB). Under these special circumstances, the Bode plots for magnitude 
for most simple transfer functions can be approximated by straight line segments. 
In the logarithmic domain, products of transfer functions are replaced by summa- 
tions of  individual logarithmic approximations. Hence the Bode diagram magnitude 
characteristic for a moderately complex transfer function can easily be produced by 
summing a few straight line approximations. 

The Bode diagram's popularity derives from the ease with which it may be 
sketched, starting from a transfer function; the ease with which it may be obtained 
by plotting experimental results; and from its usefulness as a design tool. 
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Implication: For stability of the closed loop system shown in Figure 5.3, at that 
frequency where the phase shift produced by G is - 180 °, the loop gain must be less 
than unity. Notice that the stability of the complete closed loop is being inferred from 
frequency response information referring to the block G alone. 

5.6 Simple example of the use of the foregoing idea 
in feedback loop design 

Block G of Figure 5.4a has the frequency response shown graphically in Figure 5.4b. 
Choose the largest numerical value for the gain C, consistent with stability of the 
loop of Figure 5.4c. 

At the frequency where the phase shift of block G is -180  °, the gain of G is 0.5, 
i.e. G multiplies sinusoids by a factor of 0.5 at that frequency. Thus it is clear that the 
gain C could be set to C = 2 to bring the system to the stability limit. (The gain C 
affects only amplitude - it has no effect on the phase shift curve.) 

(a) 

(b) amplitude 

0.5 

I 
I I increasing 
I frequency 

-180° 

Figure 5.4 

phase shift 

(c) 

a A block of transfer function G 
b The frequency response of G 
c The gain C in the loop is to be set to the highest possible value, 

consistent with stability of the loop 
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5.7 Practical point - the need for stability margins 

The gain C cannot in practice be set to the stability limit - rather C must be set so 
that a stability margin is observed. This ensures that, even allowing for the inevitable 
variations in all real systems, stability will still obtain. Further, the type of response 
to inputs other than sinusoids will then not be too oscillatory, as would be the case 
were the loop gain set at the stability limit. 

5.8 General idea of control design using frequency 
response methods 

Control design in the frequency domain is quite a specialist subject, requiring consid- 
erable experience and detailed knowledge. However, in principle, what is involved 
is, in addition to the original process, a compensator D, and, as before, a gain C, to 
be chosen (see Figure 5.5). 

Treating GD as a pseudo-process, the choice of gain is made exactly as before. 
By suitable choice of the compensator D, systems satisfying particular specifications 
can be built up. In particular, systems with a flat frequency response up to a given fre- 
quency may be specified. Alternatively, undesirable resonance peaks in the frequency 
response for G may be cancelled out by proper choice of D. 

Suppose that G is an existing process, like an electromechanical rotating device 
whose position is to be controlled. D is a controller, to be designed, which can contain 
frequency sensitive elements. C is, as before, a simple numerical gain. 

The problem is: Design D and choose C to obtain a closed loop system having 
high bandwidth. The frequency response of the block G is supposedly known (it has 
been measured or calculated). 

Procedure: Design D so that G and D, taken together, have a phase characteristic 
that reaches -180  ° at a much higher frequency than was the case for G alone, then 
choose the gain C so that the necessary stability margin is obtained. 

In principle: A controller (or compensator) D is being used to modify the phase 
characteristics of G in such a way that a high gain C can be used without incurring 

Figure 5.5 a 
b 

(a) _ _ ~  • 

(b) + ~ ~ @ ~  

A compensator D in series with a gain C 
The combination of(a)  in position to control the process G 
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stability problems. Such a high loop gain brings the high loop bandwidth desired by 
the designer. 

5.9 Obtaining the frequency response of a system 
experimentally - a list of difficulties 

A frequency response analyser makes the work easy since this device generates the 
necessary sinusoids, measures the responses and produces digital displays and plots of 
amplitudes and phase angles. Some of the difficulties encountered in practice are: 

• Industrial processes are often already operating in 'some sort of  closed loop 
arrangement' and it is not possible to isolate such processes for testing. 

• Industrial processes, in some cases, cannot be considered to exist separately 
from the product being produced - managers may not take kindly to sinusoidal 
variations being induced into the products. 

• Testing takes a very long time if low frequencies are involved. This applies par- 
ticularly to large processes which tend to operate in the low frequency end of the 
spectrum. 

• Electromechanical systems tend to move in a series of jerks when confronted 
with very low frequency signals. They tend to move erratically, giving inconsistent 
results, for high frequencies. Both effects can be attributed to the presence of non- 
linearities. Usually stiction is the cause of the low frequency jerking phenomenon 
whereas backlash in mechanisms is the source of most high frequency erratic 
behaviour. (At high frequencies, attenuation is severe, drive signals are of small 
amplitude, and backlash becomes significant.) 

• Systems whose output has a non-zero mean level (especially a mean level that 
follows a long term large amplitude ramp) are very difficult to deal with. 

This daunting list should not be taken to imply that frequency response testing can 
never be applied successfully in practice! However, it is true that only a somewhat lim- 
ited class of  processes can be successfully tested. Many of these are in the aerospace 
field. For industrial processes, other approaches are often used. 

5.10 Design based on knowledge of  the response of 
a system to a unit step input 

When an input signal of the form shown in Figure 5.4a is applied to a system, the 
resulting response is called the unit step response of the system (Figure 5.6). It can 
be shown that all the information contained in a system's frequency response is also 
contained in the system's step response. However, the following points should be 
noticed: 

(i) The step response of a process is very much easier to obtain than the frequency 
response (in some cases just switch it on!). Even industrial processes on which 
experimentation is forbidden can be persuaded to yield step response information. 
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(a) input signal 

(b) 

I 
time 

unit step response 

time 

Figure 5.6 a The input to a system 
b The output of  the system in response to the input (a) is called the 

unit step response of the system. 

(ii) No very attractive design methods exist that use the step response as their 
input. However, the semi-empirical Ziegler-Nichols methods (one of which 
is based around an experimentally obtained step response) exist to allow the 
rapid tuning of coefficients in three-term controllers. Three-term controllers are 
the highly successful no-nonsense limited-ability devices that actually control 
a very high percentage of real industrial processes. See Section 8.3 for further 
information. 

(iii) Computer packages can very easily transform a system's step response into an 
equivalent frequency response. Thus, the easy-to-obtain step response can serve 
as an input to frequency-response-based design approaches. However, if such an 
approach is used, it is recommended to obtain several step responses correspond- 
ing to different input amplitude changes and to repeat these for negative going as 
well as for positive going input steps to ensure that asymmetry and non-linearity 
are discovered so that, if severe, these effects may be compensated for. 

5.11 How frequency response is obtained by calculation 
from a differential equation 

Suppose that a system is represented by the differential equation 

dy 
d t  + ay = u (5.2) 
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and that the input u is a sinusoidal signal u = S sin 00t. It is not  difficult  to solve the 

equat ion 

dy  
- -  + ay = ~ sin 00t (5.3) 
dt 

using straightforward integrat ion or  Laplace  transforms.  For  f requency response pur- 

poses,  the transient part o f  the solut ion is not usually o f  interest and only the part icular  

integral,  descr ibing the per iodic  behaviour ,  needs to be considered.  Us ing  the operator  

D method  for this we obtain: 

( D + a ) y = ~ sin wt 

y --  - -  sin cot 
D + a  

3(D - a )  
- -  - -  sin wt 

D 2 _ a 2 

8 ( D  - a) 
sin 00t 

--  _o)2 _ a 2 

- - S ( D  -- a)  
- -  sin cot 

002 ÷ a 2 

( a sin 00t -- 00 cos 00t ) 
= 3 00 2 ÷ a2 

__ 3 (asin00t_-__00cos00t~ 

7- I 

(cos ot sin cot - sin o~ cos cot) - 

where  ot = tan M (00/a) 

= _ _  s in(wt  - or) 
v/-~w2 + a 2 

= m sin(00t + 4)) (say) 

Thus 

magni tude  o f  output s inusoid 1 
m = 

magni tude  o f  input s inusoid v / - j2  + a 2 

~b = phase difference be tween  input and output s inusoid --  - t a n  -1 00/a 

I f  we return to the transfer funct ion o f  the original  system, 

1 
G(s)  -- 

s + a  

(5.4) 
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and obtain 

1 
G ( j w )  -- . 

j w + a  

then we find that the magnitude m is the same thing as the modulus of the com- 
plex number G ( j w )  while the phase angle ~b is the argument of  G( jw) .  In other 
words, if G ( j w )  is expressed in RZot form then R = m and c~ = ~b. These relations 
allow the frequency response of a transfer function to be calculated very simply by 
determination of the modulus and argument of  a complex number as a function of 
frequency - there is no requirement (since these relations are available) to solve 
differential equations. 

It can easily be demonstrated by simple examples that the substitution method, as 
just described, gives the same results as eqn. 5.4. The formal justification for setting 
s = j w  to obtain frequency response information from the transfer function can be 
as follows. 

Let a process of  transfer function G (s) and having impulse response g (t) receive 
as input the complex sinusoid exp(jwt).  Then the steady state response Yss can be 
found by convolution to be 

j0 Yss = g( r )  e x p ( j w ( t  - r))  d r  

= exp( jwt )  g(r )  exp(-j~ot)  d r  (5.5) 

Comparing the term under the integral sign with the defining equation for G (s): 

G(s) = g(r )  e x p ( - s r )  d r  (5.6) 

we see that 

Yss = e x p ( j w t ) G ( j w )  (5.7) 

i.e. the output is also the complex sinusoid of frequency co but of  magnitude [G (jw) l 
and with phase difference (compared with the input) o f / G  ( jw) .  

5.12 Frequency response testing can give a good estimate 
of a system's transfer function 

Assume that frequency response testing has produced the magnitude curve of 
Figure 5.7. Then it is clear by inspection that the system can be modelled by a 
transfer function of the form 

C 
6 ( s )  = 

(1 -I- sT1)(1 + sT2) 
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output (dB) 
inl ~ut 

7 

0 

frequency 031 
,/ 

frequency 032 

frequency ~ 

Figure 5. 7 The supposed frequency response (magnitute curve) of an unknown 
system 

where Tl : 1/o)1, T2 = 1/o)2  and C = 107/20 (to see this, sketch the form of the 
Bode plot for the given G(s)). 

Questions to be asked about frequency response testing include: 

(i) On what proportion of real systems can meaningful frequency response tests be 
carried out? 

(ii) What proportion of successfully completed frequency response tests lead to an 
easily interpreted set of data? 

(iii) How often can a real control system be designed using an experimentally 
obtained frequency response model? 

(iv) Overall, roughly what proportion of real control systems are actually designed 
via these routes? 

5.13 Frequency response of a second order system 

A first order system is abnormally simple. The step response is exponential. The fre- 
quency response (magnitude) plot decays monotonically. Oscillation and resonance 
are not possible. 

A second order system, although structurally simple, can in many ways be con- 
sidered as a reliable idealisation of a whole class of systems of higher order. For 
instance, when trying to visualise a concept, it will often be sufficient to think of 
dynamic effects in terms of their second order approximation. For the reasons just 
given, it is very useful to understand the frequency response of a normalised second 
order system. 

Every second order (linear) system can be converted into the standard form 

y = 2~O9n33 + co2y = o)2u 
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with transfer function 

2 
G (s) = Wn 

s 2 if- 2~cons + w 2 

Putting s = jw 

2 
(O n 

G(jw) = w2 _ 0 )  2 + j2~WnW 

1 

1 - (o ) /O)n)  2 q- j25 (W/Wn) 

we can obtain universally useful Bode diagrams of  the plot against 'dimensionless 
frequency' W/Wn. Such plots follow as Figures 5.8a and b. 
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Figure 5.8 Frequency response for a second order system with different damping 
factors ¢ 

a Magnitude curve 
b Phase curve 
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5A The frequency response of a system with poles and/or zeros 
near to the imaginary axis 

A system has thepoles and zeros shown in Figure 5.9a. As the applied frequency moves 
up the imaginary axis there will be a notch in the magnitude response as the zero is 
passed and a peak as the pole is passed. The magnitude plot of  frequency response will 
have the approximate form of  Figure 5.9b (see Harris (1961), p. 152for further details). 

(a) 

(b) 
ma nitude 

x 

T°~2 t complex ~o t plane 
0 

0 

X 

I ! 

frequency 

Figure 5.9 a A pole-zero diagram in which the poles and zeros are close to 
the imaginary axis 

b The form of the (magnitude) frequency response correspond- 
ing with (a) 

5B Some interesting and useful ideas that were originated by Bode 

Bode (1945) showed that (provided non-minimum phase systems are excluded) the 
magnitude and phase characteristics are totally interdependent. That is to say, given 
a magnitude characteristic for a Bode diagram, then the phase characteristic is com- 
pletely determined and conversely. The following is based directly on Chestnut and 
Mayer (1959), which should be consulted for additional detail. 

Bode's theorem 1 states, retaining his original notation: the phase shift o f  a network 
or system at any desired frequency can be determined from the slope of  its attenua- 
tion~frequency characteristic over the range of  frequencies from -oo  to +oo. The slope 
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of  the attenuation~frequency characteristic at the desired frequency is weighted most 
heavily, and the attenuation~frequency slope at frequencies further removed from the 
desired frequency has lesser importance: 

7rfdAuA 1 f_~-°~[d .uA 1 dA ]lncothi2tdu 4--- - ~u 0 B(°°d) = -2 0 Jr oo 
0.8) 

where 
B(wd) = the phase shift of  the network in radians at the desired frequency Wd, 

A = attenuation in nepers where I neper = In let. 

This curve provides a valuable insight into the relation between magnitude and 
phase characteristics (Figure 5. I0). 

"~ 4 

._q= 

1 

0.1 
I I I I I III 

0.2 0.3 0.4 0.6 0.81.0 2 3 4 5 6 8 lO 
tO/tOt 

Figure 5.10 Weighting function for  use with eqn. 5.8 where u = In  w/COd. 

In most situations, the phase shift is determined largely by the first term of  eqn. 5.8. 
From this point of  view it appears that, for the phase shift to be less negative than - 180 ° 

at frequencies in the vicinity of  the -1  + jO point, the attenuation slope should be less 
than 2 nepers per unit o f  u or less than 40 dB per decade over a fairly broad range of  
frequencies. 

The following simple and very useful rule (again due to Bode and verifiable from 
the material given above) allows stable systems to be synthesised using only the 
magnitude plot: 

"A system will be stable if the slope of  the Bode magnitude plot in the region of  OdB 
is - 20  riB/decade and if  this shape is maintained for a region of  =kO.5 decade about 
the O dB crossing point. ' 

This simple rule is only approximate and it is indeed rather conservative. However, it 
is a very useful rule for making a first cut design (Truxal, 1955, p. 46). 
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5.14 Nyquist diagram and Nichols chart 

The information in a Bode diagram may be represented in alternative forms. Repre- 
sentation in polar coordinates results in the Nyquist diagram - this is a locus in the 
complex plane with frequency being a parameter on the locus. 

The Nichols chart is a plot of magnitude against phase angle. This diagram is 
again a locus along which frequency appears as a parameter. The Nichols chart is 
used with a special overlay that assists control design. 

The Bode diagram, Nyquist diagram and Nichols chart form a complementary set 
in the armoury of the frequency-response-oriented system designer. There is a very 
extensive literature. 

Note: Source material and suggestions for further reading to support the topics of this chapter will be 
found in Chapter 19. 



Chapter 6 

Mathematical modelling 

6.1 Approaches to mathematical modelling 

Figure 6.1 shows a general situation that is to be modelled. External influences 
(controls, raw material characteristics, environmental influences and disturbances) 
are contained in vector u. Available information (measurements, observations, other 
data) are contained in vector y. The vector x contains internal variables fundamental 
to the situation, x may be o f  no interest whatever, except as a building block to the 
modeller. Alternatively, x may be of  great interest in its own right. We assume that 
there are available data sets {ui, yi } for the modeller to work on. 

Approach (1) is to fit numerically a dynamic linear input-output model Gi to each 
data set {ui, Yi}. This is very easy but: 

(i) Gi may not fit the data well for any i. Such an effect may be encountered when 
the situation is non-linear and/or time varying. 

(ii) Different data sets (u j,  y j}, {Uk, Yk} that are supposed to arise from the same 
mechanism may give rise to widely differing models G j, Gk. 

(iii) Non-standard types of  information, contained within the vectors ui, yi may be 
impossible to accommodate within a standard identification procedure. 

Approach (2) is to construct a set of  interlinked physically inspired equations, involv- 
ing the vector x, that approximate (possibly grossly) the mechanisms that are thought 
to hold in the real process. 

[ ~ ]  internal h~ 
inputs u ] states x outputs y " 

Figure 6.1 A general situation that is to be modelled 
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The data sets {ui, Yi } are then used quantitatively to fix numerical values for any 
situation-specific coefficients and, when best values have been found, to verify the 
performance of the resulting model. 

Approach (3) is to fit an empirical black-box model, typically a neural network, to 
as wide a range of input-output data as possible in the hope of obtaining a single 
non-linear relation that represents all the cases presented. The expectation is that the 
behaviour of the model so obtained will generalise sufficiently well to act as a useful 
model of  the process. Neural net modelling is discussed in Section 17.2. 

6.2 Methods for the development of mathematical models 

Whereas control theory is a fairly coherent well-defined body of concepts and knowl- 
edge, supported by techniques, the activity of  mathematical modelling is ill-defined 
and its practitioners are scattered amongst many disciplines. Thus, in science, models 
are often used to explain phenomena as, for instance, the Bohr model of the atom or 
the wave theory of electromagnetic propagation. Such models are essentially visual- 
isations of  mechanisms. Far removed from this are those models, usually implicit and 
sometimes fictitious, by which politicians claim to predict future rates of  employment 
or inflation. 

We can propose that the science models contain - and this is their fundamental 
characteristic- a representation of physical variables. The second group may be, in the 
extreme, no more than extrapolations of past trends. Constructing a model in the first 
category is primarily a matter of  bringing together, combining and refining concepts 
to produce an object called a model (usually it will consist of  a set of equations). 

A key question that needs to be answered is: How universally valid is the model 
required to be? 

6.3 Modelling a system that exists, based on data obtained 
by experimentation 

A system that exists may be able to produce data from which a model can be 
constructed. The ideal situation is one where: 

(a) The system is available for experimentation with no limits on the amount of  
data that can be acquired. 

(b) The system receives no other signals than those deliberately injected by the 
experimenter. 

(c) The system is, to a reasonable approximation, linear and time invariant. 
(d) The system completes its response to a stimulus within a reasonable time scale. 
(e) The system has no 'factors causing special difficulty'. 
(f) It is not intended to use the model outside the region of operation spanned by 

the experiments. 
(g) The physical meaning of the model is not of interest. 
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(h) The only system that is of interest is a unique one, on which the experiments 
are to be made. 

This is a formidable list. It shows why modelling based on experimentation is so 
difficult. Discussing the points in turn: 

(a) Real (for instance, industrial) systems are almost never available for experi- 
mentation. This is why pilot plants and laboratory-scale systems are commonly 
used - unfortunately they are often quite different from large systems in their 
behaviour with such differences themselves being very difficult to quantify. For 
this reason, simulations of systems are often used in preference to pilot plants, 
but of course simulations need system models . . .  However, real systems may 
usually be observed under normal operating conditions and models may be 
developed based on the resulting data. 

(b) Real systems will usually be subject to operational inputs and unmeasurable 
disturbances, in addition to any signals originated by the experimenter. The 
experimenter's signals will always need to observe amplitude constraints and 
there always arises the question: Is the signal-to-noise ratio of recorded data 
sufficient to allow modelling to proceed to a level of sufficient accuracy? 

(c) Real systems exhibit every sort of undesirable behaviour: Lack of repeatability, 
hysteresis and asymmetry are the norm. 

Additionally, linearity fails for all systems in that increasing the amplitude of 
applied stimuli will fail eventually to provoke proportional responses. Linearity 
will often also fail at the other end of the amplitude range, in that, for signals of 
a sufficiently small amplitude, no output response may be obtained. All of these 
factors need to be considered when choosing the signals to be injected during 
an experiment that is specifically designed to produce data for modelling. (Such 
an experiment will be called an identification experiment.) 

(d) It will clearly be convenient if a complete identification experiment can be 
concluded within a few hours. This will not be possible if the system is very 
slow to respond to stimuli. The problem will be compounded if an identification 
method that requires long successions of test signals is used. 

(e) Problems in this category are often the most severe from a practical point of 
view. They include: 

(i) Systems that cannot operate except under closed loop control. This situation 
complicates the identification procedure because some of the system input 
signals are dependent on the system output signals. 

(ii) Systems where the only practically accessible signals are multiplexed 
sequential digital signals, often existing as part of a closed-loop control 
system as in (i). 

(iii) Systems where a product forms an essential part of the system, such that 
experimentation without the product is meaningless and on a small scale 
is impracticable. Many industrial processes operate for very long runs and 
the most important control problems are often intimately linked with the 
production aspect. For instance, keeping thousands of loaves or steel bars 
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within specification for hour after hour is not something that can easily be 
emulated on a pilot scale plant. 

(iv) Systems where there are significant trends, i.e. when, in some sense, the 
mean level of operation changes markedly with time. 

(f) Identification may form part of a project that is intended eventually to move the 
system into a new operating regime. Clearly, a model based on data obtained 
in one operating region may have little or no validity in a different operating 
region. 

(g) The coefficients in an experimentally based model will owe more to the mech- 
anics of  curve fitting than to any physical aspects of the system. This aspect may 
limit the usefulness of the model since, for instance, it is not possible to estimate 
from the model the effect of  a change in system configuration. 

(h) Development projects will often aim to design solutions for a class of systems 
(rather than for one particular given system). In such instances, it is important 
not to base global designs on models of only local validity. 

6.4 Construction of models from theoretical considerations 

A system can most easily be modelled when every aspect obeys established phys- 
ical laws and where, additionally, all the required numerical coefficients are exactly 
known. Most usually, real systems have to be heavily idealised before textbook 
theories can be applied. Such idealisation naturally means that model and system 
differ appreciably. 

Turning to numerical coefficients, these can be classified roughly into three 
groups: 

(i) Universal constants where values are exactly known. 
(ii) Coefficients whose role in the theoretical framework is well understood but 

whose numerical values may vary over a wide range depending on system 
configuration and prevailing conditions. 

(iii) Coefficients on whose numerical values the appropriate accepted theories have 
little or nothing to say. 

6.5 Methods/approaches/techniques for parameter estimation 

The methodology for mathematical modelling is as follows. Relevant theories are 
consulted to yield a tentative set of equations, in which some of the coefficients are 
unassigned. Data are recorded from particular systems and the coefficients in the 
equations are adjusted until the set of  equations (the model) performs as closely as 
possible like the real world system - as judged by comparison between recorded 
system data and model-generated data. The comparison is made unambiguous by 
the definition of a scalar-valued criterion that is to be minimised by choice of model 
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coefficients. Automatic search for the best model coefficients is assisted by parameter 
estimation algorithms, often called informally, but accurately, hill-climbing methods. 

These methods search for the minimum in the multidimensional and often ill- 
conditioned parameter space (ill-conditioned in the sense that the axes are in practice 
far from orthogonal and the function that is to be minimised often has narrow ridges 
on which an algorithm without ridge-following abilities may terminate its progress 
before reaching the minimum). 

Figure 6.2 shows the scheme by which observations and model outputs are 
compared and the difference between them minimised by hill-climbing. Figure 6.3 
illustrates the iterative search in parameter space performed by the hill-climbing 
algorithms. 

Rarely, if ever, does the first attempt at modelling succeed in the sense that it 
produces an accurate usable model. Almost always alternative model structures have 
to be tried, hill-climbing repeated and the fit between model and reality re-examined, 
until eventually a sufficiently good model performance is obtained. During the model- 
ling procedure, the misfits between model outputs and measured observations (often 
referred to as 'residuals') can be plotted to assist in decisions on model changes that 
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Figure 6.3 Visualisation of an iterative search in parameter space 
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might with advantage be made to further improve the fit. In principle, the residuals 
should contain no deterministic element and should have zero mean - if not, the 
implication is that there are still unmodelled deterministic features that should be 
incorporated into the next version of the model. 

6.6 Why modelling is difficult - an important discussion 

Let Z be a class of  system for which a model M is to be constructed. M is to have a 
theoretically based structure with experimentally determined numerical coefficients. 

It is required that M should represent a large number of  actual system examples 
S~, $2 . . . . .  Sn. To allow the experimental determination of numerical coefficients, 
sets of operating data are obtained from the ith system Si. 

Each of the different data sets from system Si can be denoted Dij, j = 1 . . . .  and 
of course, different data sets Dij , Dik may represent nominally identical operating 
conditions of the system Si, or they may happen to be different, or they may have 
been planned to be widely different especially to assist modelling. 

With the aid of  relevant theory, we select particular model structures M~, M~ . . . .  
(such selection will always involve a compromise between oversimplification and 
overelaboration). Armed with one model structure M0 and one data set Dll,  we can 
use parameter estimation techniques to produce a best fit. 

The key question is: to what extent is the model structure M0, with parameters 
determined from data set Dll,  meaningful to represent the whole class Z. It is clear 
that many data sets from different representative systems would need to be analysed 
before any claim to universality of  models could be made. 

The extreme difficulty that this problem represents can soon be appreciated if one 
thinks of  particular examples. Consider, for instance, the modelling of the manufactur- 
ing of electronic devices or the modelling of biological growth processes (as required 
in the manufacture of  penicillin). The choice of  approach somewhere between the- 
oretically based universality and a practically based one-off solution will depend on 
the intended use for the model. 

A compromise solution to satisfy many short to medium term requirements is to 
find a general tried and tested piece of software that is intended to represent (say) 
a class of  production processes, and then customise it by structural changes and 
parameter estimation on typical data to represent a particular situation (Figure 6.4). 
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Figure 6.4 The modelling procedure: the route from real system to specified model 
of that system 
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6.7 Fixing of parameters 

Clearly (see Sections 6.3(i), (ii), (iii)), some coefficients are universal constants and 
can be fixed for all time; others are specified by the theory to lie in a known band; 
for yet others there is no a priori indication of  numerical value. 

6.8 Parameter estimation 

Parameter estimation is the activity of  fixing numerical values in thegeneric model 
of  the system to particularise it to a specific case. From what has already been 
said, it is obvious that coefficients on which there is no theoretical guidance will 
need to be specified either by 'case law' (i.e. experience from elsewhere) or by 
observation/experimentation. 

6.9 Regression analysis (This sect ion is based  on D a v i d s o n  (1965))  

Suppose we assume a mathematical model relating a dependent variable y to a set of  
independent variables Xl, x2, . .  • xk 

y - - - - a l X l  + a 2 x 2 + - - ' + a k X k  

The ai are parameters whose values are to be determined from sets o f  repeated 
measurements that can be tabulated in the form: 

Yl Xl l  x12 . . .  Xlk  

Y2 x21 x22 . . .  X2k 

Yn Xnl Xn2 "'" Xnk 

or in vector-matrix notation, 

[ylX] 

where X is an n x k matrix. It is usually assumed that: 

(i) The measurements X have no error. 
(ii) The measurements y each have a random normally distributed error, with mean # 

and variance a2;  the variance is the same for all observations, and the errors of  
the y are statistically independent. There are two approaches to choosing the 
parameters a l, a2 , . . . :  Gauss's criterion of  least squares and Fisher's criterion o f  
maximum likelihood. Under the assumptions listed above, these two approaches 
lead to the same results. 
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X 2 

/ "~y~'~ ~Y-~¢ 

a l  X 1 

Figure 6. 5 The method o f  least squares considered as the projection o f  the observed 
vector onto a k-dimensional hyperplane 

Minimising the sum of squares between calculated and observed values for y 
involves solving the set of simultaneous linear equations 

XT Xa  = XT  y 

leading to 

a = ( x T x ) - I X T y  = C X T y  

As is shown by Davidson (1965), the method of least squares may be viewed geo- 
metrically as the projection of the observed vector y 6 ]R n onto the k dimensional 
observation hyperplane whose basis vectors are the columns of Xa.  The projection 
of y onto the observation space is ~ 6 ]Rk. Figure 6.5 illustrates the concept. 

6.10 Analysis of  residuals 

In a perfect model, the residuals y - ~ display only a random error pattern. Plots 
of residuals are most valuable in highlighting systematic unmodelled elements. 
Figure 6.6 illustrates some of the types of plot that can assist the process of  model 
development and refinement (from Davidson (1965)). Figure 6.6a shows the desirable 
pattern. Figures 6.6b to 6.6e illustrate various types of undesirable bias. 

6A Doubt and certainty 

An interesting fundamental question that arises in mathematical modelling is to what 
extent it is ever possible to claim that a particular model structure is correct. The 
following extract from Cormack (1990) is relevant: 

'A theorem in mathematics starts and ends in the mind. Given the initial premises only 
logic is needed to reach the final answer. But problems arise when the argument starts, 



Mathematical modelling 6 9  

not from axioms, but from sense data of the real world. More than one theory will 
account for the observations and logic may not, by itself, settle the question. In such a 
ease, a well designed experiment may show which of two contradictory ideas is to be 
preferred. 

'A scientific theory is accepted not because it is "true '" whatever that may mean, 
but because it works and is useful. Some helpful rules have emerged. The prime test of 
a theory is that it shouldpredict correctly. Secondly it must be consistent with the rest 
of  science. It must have, as Einstein (French, 1979) put it, both "internal and external 
coherence'. A crucial experiment never verifies the "'correct" idea in any absolute 
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Figure 6. 6 Possible plots o f  residuals (after Davidson, 1965) 
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sense: and also Einstein (French, 1979) "'As far as the propositions o f  mathematics refer 
to reality they are not certain; as far as they are certain they do not refer to reality ". " 

6B Anticipatory systems 

Anticipatory systems-defined as those systems which contain internal predictive models 
o f  themselves and/or o f  their environment, and which utilise the predictions o f  their 
models to control their present behaviour - are specially complex from the modeller 's 
point o f  view (Rosen, 1985). 

Systems o f  this type have a variety o f  properties which are unique to them, just 
as 'closed-loop" systems have properties which make them different from 'open loop" 
systems. It is most important to understand these properties, for  many reasons. Rosen 
(1985) argues that much, i f  not most, biological behaviour is model-based in this sense. 
This is true at every level, from the molecular to the cellular to the physiological to the 
behavioural. 

Rosen argues: 
"An anticipatory system is one in which present change o f  state depends upon future 

circumstances, rather than merely on the present or past. As such, anticipation has 
routinely been excluded from any kind o f  systematic study, on the grounds that it violates 
the causal foundation on which all o f  theoretical science must rest, and on the grounds 
that it introduces a relic element which is scientifically unacceptable. Nevertheless, 
biology is replete with situations in which organisms can generate and maintain internal 
predictive models o f  themselves and their environments, and utilize the predictions o f  
these models about the future forpurpose o f  control in the present. Many o f  the unique 
properties o f  organisms can really be understood only i f  these internal models are taken 
into account. Thu~, the concept o f  a system with an internal predictive model seems to 
offer a way to study anticipatory systems in a scientifically rigorous way. 

"This approach raises new questions o f  a basic epistemological character, lndeed, 
we shall see that the utilization o f  predictive models for  purposes o f  present control 
confronts us with problems relating to causality. 

'The gadgeteers and data collectors, masquerading as scientists, have threatened 
to become the supreme ehiefiains o f  the scholarly world. 

'As the Renaissance could accuse the Middle Ages o f  being rich in principles and 
poor in facts, we are now entitled to enquire whether we are not rich in facts and poor 
in principles. 

'Rational thought is the only basis o f  education and research. Facts are the core o f  
an anti-intellectual curriculum. 

"One o f  the best-studied biological homeostats is one involved in maintaining an 
optimal constancy o f  light falling on the retina o f  the vertebrate eye, the so-called 
"'pupillary servomechanism". Roughly speaking, in conditions in which there is a 
great deal o f  ambient light, the pupil contracts, and admits a smaller amount o f  tight 
to the eye. Conversely, when the ambient light is dim, the pupil opens to admit more 
light. It has been established that the control system involved here is a true feedback 
system, whose output is represented by the actual amount o f  light falling on the retina. 
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Thus, the sensor for the controller is at the retina, and the system reacts to how much 
light has already been admitted to the eye. The time constant for  this servomechanism is 
not outstandingly small, but the system clearly functions well for  almost all conditions 
that the organism encounters. 

'Now let us consider the analogous problem of  controlling the amount o f  light 
entering a camera to ensure optimal film exposure. Here again, the control element is 
a diaphragm, which must be opened when the ambient light is dim, and closed when 
the ambient light is bright, However, in this case, we cannot in principle use a reactive 
mechanism at all, no matter how small its time constant. For clearly, i f  the input to the 
controller is the light falling on the film, in analogy to the situation in the eye, then the 
film is already under- or over-exposed before any control can be instituted. In this case, 
the only effective way to control the diaphragm is through an anticipatory mode, and 
that is what in fact is done. Specifically, a light meter is then referred to a predictive 
model, which relates ambient light to the diaphragm opening necessary to admit the 
optimal amount o f  light to the camera. The diaphragm is then preset according to the 
prediction o f  the model. In this simple example we see all the contrasting features o f  
feedforward and feedback; o f  anticipatory as against reactive modes o f  control. [This 
note has been added by the author JRL: "since those words were written, intelligent 
flashguns have become available that, working closely with a coupled camera, do work 
in feedback mode as follows. The lens is opened, the flash begins, light is reflected from 
the subject back into the lens to make the exposure and to be monitored and integrated 
by a through-the lens light meter. When calculation shows that exposure is complete, 
the flash is terminated. The extreme speed o f  light makes this remarkable feedback loop 
possible. To complete this discussion, I note that the Nikon SB-27 flashgun can control 
its length o f  flash over the range from zero to a maximum of  around 1/1000 second to 
make this feedback operation possible.] 

'If it were necessary to try to characterize in a few words the difference between 
living organisms and inorganic systems, such a characterisation wouM not involve the 
presence o f  DNA, or any other purely structural attributes; but rather that organisms 
constitute the class o f  systems which can behave in an anticipatory fashion. That is to say, 
organisms comprise those systems which can make predictive models (of themselves, 
and o f  their environments) and use these models to direct their present actions. 

'At the most fundamental level, anticipatory systems appear to violate those prin- 
ciples o f  causality which have dominated science for  thousands o f  years. It is for  this 
reason that the study o f  anticipatory systems per se has been excluded routinely from 
science, and that therefore we have had to content ourselves with simulations o f  their 
behaviour, constructed in purely reactive terms. ' 

6C Chaos 

Smale and Williams (1976) showed that non-linear dynamic systems o f  order 3 or more 
may exhibit chaotic behaviour, first identified by Li and Yorke (1975). Chaotic behaviour 
is characterised by: 

(i) Any individual solution has a completely well defined deterministic trajectory.: 



72 Control theory 

(ii) Very small perturbations, for  instance to the initial conditions, can give rise to very 
large differences between later trajectories. 

O'iO Solutions o f  equations exhibiting chaotic behaviour may be difficult or impossible 
to distinguish from solutions generated by a purely stochastic process. 

The difference equation 

x(k  + 1) = rx(k)(1 - x(k)) = f x ( k )  (say) (6.1) 

can also exhibit chaotic behaviour as the parameter r is varied. (This is because the 
delay term implicit in a difference equation represents infinite dimensionality, as judged, 
for instance, by the order o f  s plane poles.) 

There are two equilibrium points 

1 
at x =O and x =  1 -  - 

r 

Behaviour o f  eqn. 6.1: 
Equation 6.1, which arises in population dynamics, will be studied for  the restricted 

set o f  values 0 < x < 1. The behaviour o f  eqn. 6.1 may be understood graphically, 
using repeatedly a curve relating x(k + 1) to x (k ) as in Figure 6.Z 

For use, x(k + 1) is derived from x(k), then 
x(k  + 2) is derived from x(k + 1), etc. 

The process can be simplified using a 45 ° line to transfer each ordinate value back 
to the abscissa to start the next iteration as shown (Figure 6. 8). (Local) stability depends 
on the slope off near to the equilibrium point. This slope f l  must satisfy 

l f ' ]  < l for stability 

d f  = r ( 1 - - 2 x )  
dx 

and at the non-trivial equilibrium point 1 - 1/r 

__dfdx = r ( 1 - ( 2 - ! ) ) = 2 - r  

7 

x(k) 

Figure6.7  The curve relating x ( k  + 1) or x ( k )  (relevant to eqn. 6.1) 
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x(1) x(2) x(O) 

Figure 6.8 Graphical illustration o f  the iterations in the solution o f  eqn. 6.1 

Thus the non-trivial equilibrium point is (locally) stable i f  

l < r < 3  

For r > 3, the solution is initially one that, in the steady state, oscillates between 
two fixed points. When r is increased further the system oscillates between 4, 8, 16, 
etc. fixed points. These stable oscillations with periods 2 n, n --> oo, continue only 
up to a critical value rc or r. For eqn. 6.1, rc = 3.57. For r > rc, very long cycles 
appear and different types o f  periodic behaviour are passed through. Between this type 
o f  behaviour occurs another type of  behaviour where different initial points produce 
different totally non-periodic behaviour. It is this non-periodic behaviour that is called 
chaotic behaviour. 

Segel (1980), Chapter 4, states that, for  any particular value o f  parameter r, the set i 
o f  initial conditions that gives rise to chaotic behaviour has measure zero, According 
to this, chaotic behaviour is atypical and should not therefore be considered as t h e  
obvious source o f  erratic behaviour in observed data. The most interesting aspect o f  
all the foregoing is probably that very simple equations can give rise to highly complex 
solutions. 

6D M a t h e m a t i c a l  mode l l ing  - s o m e  phi losophica l  c o m m e n t s  

It can be rewarding to glance sometimes beneath the mechanistic surface activity o f  
mathematical modelling to query the hidden foundations. Here we content ourselves 
with the following brief discussions: 

(1) On causality and time-ordering 

Causality causes an awkward asymmetry in mathematics. Time hardly appears in pure 
mathematics and, where it does, anti-causality would be just as valid, feasible and 

usable. 
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Difficulties are most likely to be encountered when synthesing an optimal controller 
or an algorithm for  reconstructing a continuous time signal from given discrete samples. 
As an illustration, let y(t) be a continuous signal defined for all real vales o f t  and let 
y * ( k T ) be the properly sampled version o f  the same signal. I f  now, given some specific t, 
it is required to recover y(t) from the sequence o f  samples, the recovery algorithm will 
be found to have the form 

oo 

y(t) = f ~_, y*(kT) 
k = - - o ~  

for  which, when used as a real time algorithm, only current and past values o f  y* ( k T ) 
can be available. 

It would be desirable, but is not always possible, to insert a priori conditions into 
derivations to ensure that the solutions will be causal and therefore implementable. In 
transfer function manipulation, causality is ensured by simply outlawing as anti-causal, 
any transfer function whose numerator has a higher order than the denominator 

(2) ~me-ordering 

Aulin (1989) 'But sometimes the time-ordering between cause and effect is left unspec- 
ified, and only implied. Examples o f  this kind o f  causal law are Ohm's law, Coulomb's 
law, Biot-Savart "s law, and the laws (Boyle, Gay-Lussac, etc.) that characterise the 
thermodynamic equilibrium. Examples o f  time-specified causal laws are, o f  course, 
plenty. Among them are the law o f  the freely falling body and other laws o f  mechan- 
ics, as well as the laws o f  electrodynamics. Common to all laws o f  physics mentioned 
above is that they are 'phenomenological laws ", i.e. more or less conceived of  as direct 
inductive generalisations from experimental results (or, i f  they are not, they can still be 
considered as such generalisations). " 

(3) On the surprising simplicity o f  the mathematics that suffices to model very 
complex physical systems 

Dietrich (1994) "This is the old question about the unreasonable effectiveness o f  math- 
ematics in the natural sciences or as Davies put it "why the universe is algorithmically 
compressible" (i.e. why the obviously complex structure o f  our world can be described 
in so many cases by means o f  relatively simple mathematical formulae). This is closely 
linked to why induction and therefore science at all, succeeds. It is difficult to avoid 
asking whether mathematics, as the outcome o f  human thinking, has its own specificity 
which, for  whatever reason, fits to the specificity o f  what man would see or experience. 
As long as this question is not comprehensively answered, science may explain much 
but not its own success." 

See also Eugene Wigner (1960) on 'The Unreasonable Effectiveness o f  Mathematics 
in the Natural Sciences." 

It seems that the Creator had only a few simple mathematical equations with which 
to underpin the immensely complex phenomena that the Universe contains. There are 
hundreds o f  illustrative examples o f  which the best known is possibly the law o f  gravity 
that Newton postulated based around very sparse and not very accurate observations o f  
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falling bodies and o f  the motion o f  the Moon 's path through the sky. Newton's laws fitted 
the few available observations o f  the time to within about 4 per cent. As observations 
have become much more accurate and more numerous it has been found that Newton's 
gravitational law is accurate to better than one ten thousandth o f  one percent. 

A somewhat different illustration but equally impressive is the case o f  Maxwell's 
equations (1862) describing the magnetic field. Largely for reasons o f  symmetry 
Maxwell enhanced the equations with an expression that predicted the existence o f  
electromagnetic waves which were unknown at the time. When Maxwell published his 
findings that electromagnetic waves may exist and propagate through free space, there 
was no way to verify that finding. However, there was available an approximate value 
at that time for the velocity o f  light and this was so close to the value calculated by 
Maxwell for  his electromagnetic phenomenon that he wrote; 'It is scarcely possible to 
avoid the inference that light consisted o f  transverse undulations o f  the same medium 
that is the cause o f  electrical and magnetic phenomena '. In 1887 Hertz experimentally 
verified the existence o f  the electromagnetic waves predicted by Maxwell. [See Coulson 
and Boyd (1979)for more details on this topic.] 

(4) On determinism and predictability 

Strong determinism: the predictability, with certainty, o f  single future events in the 
given dynamical system. 
Probabilistic determinism: the predictability o f  the probability distributions of  future 
events. 
Weak determinism: the predictability o f  the possibility distributions o f  future events. 
lnterdeterminism: the unpredictability o f  all future events in the dynamic system 
concerned. 

Thus, the concept of  causality cannot be identified simply with 'determinism '. but 
allows three different degrees o f  determinism and, in addition to them, a case o f  complete 
indeterminism. 

(5) On reversibility and irreversibility 

What is the general quantitative measure o f  irreversibility ? 
Nature does not permit those processes for which she has less predilection than she 

has for the initial states. The measure o f  nature's predilection was defined by Clausias 
as Entropy. 

Consider the differential equations 

d2y(t) 
dt 2 + y(t) = 0 

d2y(t) + dy 
dt 2 --~ + y(t) = 0 

The first equation can be seen to represent a reversible process that will have a similar 
solution for  both t and - t .  The second equation is stable for positive time but unstable 
for  negative-going time. The lesson from this simple example is generalisable so 
that differential equations with only even order terms can be expected to represent 
reversible processes. 
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(6) On modelling social and political phenomena 

At a deep enough level, both the arts and the sciences are seeking for  meaning. At that 
level, do the arts and the sciences begin to merge? 

Quoting Truesdell (1984): 'Nothing is easier to apply to socio-political phantas- 
magoria than failed mathematics substantiated by experiments programmed to confirm 
it. ' and 

'Rarely i f  ever does a scientist today read Newton and Euler as professors oflitera, 
lure read Shakespeare and Hemingway, seeking to translate into today "s pidgin for  their 
students the eternal verities archaically expressed by those ancient masters, or gath- 
ering material to use in papers for  reverential journals read only by scholiasts (sic) o f  
literature, who themselves read only to gather material to help them write more papers 
o f  the same kind." 
? 

6E A still relevant illustration of the difficulty of mathematical 
modelling: the long march towards developing a quantitative 
understanding of the humble water wheel, 1590-1841 

In this example, excessive reliance on a scientific theory that didn't quite apply 
significantly hindered quantitative understanding o f  the key phenomena involved. 

In Britain in the eleventh century there were, according to the Domesday book, 5624 
water mills; by the eighteenth century the number had increased to as many as 20,000. 
Water wheels were of  great economic importance in most o f  Europe over many centuries 
since they provided the bulk o f  the power for many basic installations (mining, metal 
forming, milling) and they were also used to pump water, with notable examples being 
their use on the Seine at Marly where 14 water wheels lifted water 502 feet to supply 
fountains, gardens and palaces, including Versailles. 

By the eighteenth century, there was considerable overcrowding o f  water wheels on 
many European waterways and in many locations, no more wheels could be fitted in. 
Thus there was a strong incentive to design water wheels o f  maximum efficiency. 

The Problem 

Few mechanisms seem easier to understand "by inspection' than a basic water wheel. 
There are two types - "undershot' (when the wheel dips into a stream or mill race) and 
"overshot' where a duct feeds the water over the top o f  the wheel which then turns by 
the force o f  gravity (Figure 6.9). 

Although it is obvious in the extreme how water wheels work and although nothing 
is hidden from our view and all the laws o f  gravity, force, etc. are, and were, well known, 
the development o f  quantitative understanding contains salutary lessons. 

What is the more efficient, the overshot or the undershot wheel? 

.4 theorem o f  Torricelli o f  1638 states that water spouting from an orifice at depth H 
in a tank and water in free-fall for  a vertical height H both have identical velocities 
(Figure 6.10). [Evangelista Torricelli (1608-1647) was an Italian mathematician and 
physicist who worked closely with Galileo and who gave his name to the Torricellian 
vacuum at the top o f  a mercury in glass barometer.] 
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undershot overshot 

Figure 6. 9 Modelling a water wheel There were 15,000 water wheels in 
Britain in the 1700s. Among those who studied it were Huygens, 
Maclaurin, Euler, Navier, Coriolis, Lagrange and D'Alembert. 
There were huge discrepancies between theory and observation. 
The typically British 'Method o f  coefficients" overcame this but 
made it difficult to know what, in the design, was significant. 
Accurate models only became available when systematic (expen- 
sive) experimentation was undertaken by the Franklin Institute, 
around 1830, by which time, steam was replacing waterpower 
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Figure 6.10 Modelling a water wheel The theory that misled: the velocities 
V1 and 112 are equal; Vl = V2 = ~ (Torricetli, 1638) 

This theorem is correct but it misled a series of scientists into wrongly assuming that 
impulse and weight were equally effective as motive powers and therefore that both types 
of water wheels (undershot, overshoO must necessarily have the same efficiency. Some 
of Europe's most distinguished scientists made armchair pronouncements purporting to 
be the defining relations for both types of wheels. Most of these pronouncements turned 
out to be well wide of  the mark, as some sample quotations show (Table 6.1). 

As Table 6.1 indicates, there were many rival theories producing quite different 
conclusions. 

All real progress towards understanding was made on the basis of experimentation 
and in particular, in England, the land of pragmatists, an approach called "the method of 
coefficients" had begun to be applied. The method was to multiply terms in theoretical 
equations by numerical coefficients to make theory agree with practice. Thus, two 
opposing views prevailed: 

• that of the British camp typified by Milner (1778) who said." 
'(Continental) writers who published water wheel analyses really had no intention 
of making any improvements in practice. They were simply illustrating the use of 
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Table 6.1 Analyses o f  the vertical water whee l  c. 1700-  
c. 1800 

Investigator Date Maximum possible efficiency o f  wheel 

Undershot Overshot 

Parent 1704 15 15 
Euler 1754 15-30 100 
Borda* 1767 50 100 
Bossut 1770 15 
Waring 1792 25 
Evans 1795 58 67 
Buchanan 1801 59 

Borda "s analysis proved eventually to be substantially correct but this was not 
verified and accepted until 70 or 80 years had passed, 

algebra or the calculus. Too many arbitrary assumptions were made for  them ever 
to correspond with reality." 

• -andthat o f  the continental theorists who complained that inexactness was inherent 
in coefficient equations, since resistance, friction, and all other losses were taken as 
a block and expressed by a constant coefficient. Every loss, they argued, depended 
on different circumstances; and could not be expressed by a single constant rela- 
tionship. Since all losses were included in one figure, it was impossible to study the 
influence o f  each on the wheel's performance. 

So theoreticians continued to derive ever more complicated equations, pushing the math- 
ematical analysis o f  the vertical water wheel to new limits, while practising engineers 
used the so-called method o f  coefficients in which experimentally derived coefficients 
were inserted into basic theoretical equations to bring them into close agreement with 
practice. 

By 1835 the steam engine had arrived on the scene and had taken over more 
than 50% of  industrial applications. As an anticlimax, by around 1850 extensive 
experiments had finally allowed the working-out o f  a fairly complete theory o f  water 
wheel operation and an understanding o f  the effects o f  various design features o f  
performance. 

In summary 

• Quantitative understanding ofrealprocesses is very difficult. 
• Theory rarely (i.e. never) applies easily in an application context. 
• Experimentation is difficult to plan or interpret without a theory. 

(Milner, L "Reflections on the communication o f  motion by impact or gravity" Royal 
Society o f  London. Philosophical Transactions 68, pp 344-379, 1778.) 
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6F A postscript on the effectiveness of thought experiments 

(1) A thought experiment about the water wheel 

One o f  the most impressive steps forward in the development o f  understanding o f  water 
wheel operation, see 6E above, was made by a thought experiment by de Parcieux 
(1754). He imagined a very slowly rotating frictionless water wheel gravity driven by 
dripping water. He was able to argue convincingly that no inevitable losses would occur 
in such a system and that the efficiency for an overshot wheel could therefore approach 
100%, which turned out to be the case (de Parcieux, A. Proceedings AS-M, pp 603-614, 
Paris. 1754). 

(2) Another success for  thought-experimentation; conjecturing about the 
International Date Line 

On Thursday, 10 July 1522. the Portuguese explorer Ferdinand Magellan completed 
one o f  the earliest circumnavigations o f  the world and on his arrival back in the Cape 
Verde Islands he and his crew were amazed that they had 'lost a day' since according 
to their carefully kept log, the day was Wednesday, 9 July. 

Among many people who conjectured over this anomaly was Charles L. Dodgson 
(Lewis Carroll) who much later (1860) argued along these lines." 'Imagine that all the 
Earth were land and that a person could run right round the globe for  24 hours with 
the sun always overhead. That person would never see the sun rise or set. However, at 
the end o f  the trip the person would be at the same point they started from, but, 24 hours 
having elapsed, the day must have changed. So the question arises: at what point in the 
journey did the day change? 

Dodgson "s simple argument or 'thought experiment' makes very clear the need for  
some line where the date would change. (The International Date Line came into being 
only in 18840 

6G Experimentation on plants to assist in model 
development - the tests that you need may 
not be in the textbook! 

In order to allow simulation o f  different scenarios for  a not-yet-built automation scheme 
it was necessary to know the load characteristics (inertia and friction as a function o f  
angular velocity ) o f  an existing composite gear train that was to be used in the system~ 
The system, Figure 6.11, consists o f  a 30 kW motor driving a massive load through a 
gear train o f  about 1400:1 reduction. 

This must be a common problem but the only reference found (Libby, 1960) was 
unhelpful. Acknowledged experts on mechanical drives who were asked to help sketched 
expeCted curves that later were shown to be qualitatively well wide o f  the mark. 

The following simple test, inspired by an undergraduate laboratory experiment, 
provided all the information needed. The DC electric drive motor is switched on to the 
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DC ,~,4.,. ,~ . , . r  
~site gear 
overall ratio 

L 1400:1 

input shaft 

Figure 6.11 The motor and load whose overall inertia and torque as a 
function o f  angular velocity were determined experimentally 

supply at voltage v and its steady-state current i and steady angular velocity Ohnax are 
recorded. 

It is then argued that in the steady state, 

(electrical power to the motor - losses in the motor) 

= mechanicalpower delivered to the input shaft 

o r  

vi -- motor losses = WmaxT(ohnax) 

where T (w) denotes the resisting torque o f  the load at angular velocity ~o. 
Leaving out motor losses for purposes o f  this explanation (since the principle is 

unaffected) allows calculation o f  T (aJmax) as 

vi 
T ( wmax ) = 

ah.nax 

Next we switch off the motor and record the decay o f  w against time, Figure 6.12. 
The argument now is that at switch-off, the load torque T(ahnax) is the only agent 

that slows the shaft, whereas the effective inertia, call this J, o f  the whole load as seen 
at the input shaft is the agent that continues to drive the load in the absence o f  power 
being applied. 

The relevant equation is 

jR dt + ¢-oT (o.hnax) ---0 

The inertia J, assumed invariant for  all ~o, can be found from 

-Wmax T (Ohnax) 
J =  

( dw/ dt )w=O~nax 
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Figure 6.12 

~max 

time 

i 

Illustrating how d w / d t  as a function o f  w is estimated by tan- 
gents to the experimental curve. Notice also how the estimate S 
(not discussed in the texO is a useful measure o f  static friction 
in the drive 

I 

O) 

Figure6.13 The final torque versus w curve has this form. Here S denotes 
static friction (see Figure 6.12) 

and by drawing the solid tangent shown in Figure 6.12, the inertia J can be derived. (In 
the case described here, a laborious day's work by the author, working on engineering 
drawings and referring approximate inertias all the way through the composite train, 
produced a confirmatory figure only 8% away from the experimental figure.) 

Next a sequence of  tangents (shown dotted in Figure 6.12) was drawn at frequent 
points along the o9 decay curve and at each chosen to. The load torque at each of  the 
chosen o~ was then calculated from 

-J(do9/dt) 
T(oJ) = 

o9o9 chosen 

allowing the curve o f  T(to) to be plotted against o9 (Figure 6.13). In use, it was stored 
as a look-up table interpolated by a subroutine at every step in an overall process 
dynamic simulation. 



Chapter 7 

Limits to performance 

Most closed loop systems become unstable as gains are increased in attempts to 
achieve high performance. It is therefore correct to regard stability considerations 
as forming a rather general upper limit to control system performance. Also, as will 
be discussed in this chapter, achievable rates of change are always constrained in 
practice by equipment limitations. 

7.1 S t a b i l i t y  - in i t i a l  d i s c u s s i o n  

A stable system is one that, when perturbed from an equilibrium state, will tend to 
return to that equilibrium state. Conversely, an unstable system is one that, when 
perturbed from equilibrium, will deviate further, moving off with ever increasing 
deviation (linear system) or possibly moving towards a different equilibrium state 
(non-linear system) (Figure 7.1). 

All usable dynamical systems are necessarily stable - either they are inherently 
stable or they have been made stable by active design means. For example, a ship 
should ride stably with its deck horizontal and tend to return to that position after 
being perturbed by wind and waves (Figure 7.2). 

Figure 7.1 a Stable system 
b Unstable system 



84 Control theory 

(a) (b) 

Figure 7.2 a Equilibrium position of ship 
b Ship when perturbed tends to equilibrium 

(a) response 

i;eitr~alrbatio n 

time 

(b) res 3onse 

initial 
perturbation 

J 

time 

Figure 7.3 a Response of a stable system after perturbation 
b Response of an unstable system after perturbation 

Stability occupies a key position in control theory for the reason that the upper limit 
of the performance of a feedback control system is often set by stability considerations, 
although most practical designs will be well away from the stability limit to avoid 
excessively oscillatory responses. 

It is possible to check whether a system is stable or not by examining the behaviour 
with time, following an initial perturbation (Figure 7.3). To establish whether a system 
is stable or not, we do not need to know the solution of the system equations, but only 
to know whether after perturbation the solution decays or grows. 

Notice that, for a linear system, the responses to initial perturbations of different 
magnitudes are identical except for a scaling factor. That is, let x0 be the initial 
perturbation and x( t )  the resulting response; then the response to a perturbation 
kxo will be kx(t) .  Therefore if a system is stable in response to one magnitude of 
perturbation, it will be stable in response to all other magnitudes. 

7A Stability theory - a long term thread that binds 

Stability analysis has a long and honourable history providing a thread that pre-dated 
control theory and then linked in with it. 

Stability studies were applied to problems in planetary motion before control -was 
even considered and most famously to the problem of  the nature of  Saturn's rings, 
Figure 7. 4, for which Maxwell was awarded the Adams Prize. (Maxwell conjectured 
correctly that for the rings to be stable they must be particulate.) I took the "Top' example 
in Figure 7.5 
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Figure 7. 4 

stability 

Saturn's rings. Maxwell's Adams Prize essay showed the rings to 
be particulate 

stability 

R 

The disc of a spinning top can be moved to three possible positions: 
(i) in the top 1/3 of the rod 
(ii) in the centre 1/3 
(iii) in the lower 1t3. 

Show that the device will operate stably as a top only in positions (i) and (iii) 

Figure 7. 5 Maxwell's exam question to King's College London 

from an examination paper that Maxwell set to an undergraduate class at King's College, 
London. It is not recorded how many, if any, answered the question with any degree o f  
success but at the time no suitable stability criterion existed and the student wouM need 
to invent one. To make the question even more demanding, Maxwell added a rider to 
his question asking the student to state whether any invented stability criterion in the 
solution was necessary and sufficient/ 

The Hurwitz, Routh and similar criteria (see Section 7B) require knowledge of  the 
differential equation of  the system that is to be analysed. 

Lyapunov 's two powerful theorems (Section 13.2) have both algebraic and geometric 
interpretations that have allowed them to link with many aspects of  non-linear control. 

The Nyquist and Bode criteria which came next in the development require 
knowledge only offrequency responses in graphical form. These can be obtained exper- 
imentally and can form the basis for synthesis of  controllers that will yield desired 
stability margins, This development allowed the earliest robust control systems to be 
systematically designed. 

Table 7.1 highlights some of  the famous names of  stability theory. 
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Table 7.1 Some milestones in stability theory 

A long term thread that binds 
• Maxwell: governors, Saturn's rings, spinning top 
• Lyapunov: two stability theorems 
• Hurwitz Routh: stability information from the coefficients o f  the (unsolved) 

differential equation 
• Nyquist: graphical frequency response method 
• Bode: developments o f  Nyquist approach 
• Evans: root locus interpretation o f  Nyquist approach 
• Jury: sampled data formulations 
• Doyle: contributions to developing robust control methods 

7.2 Stability for control systems - how it is quantified 

Let Z be a linear system that is in an initial condition x0 at time to; then the state of 
the system for t > to is given by an equation of the form 

x ( t )  = A e at 4- B e ~t + . . .  (7.1) 

where the number of terms depends on the dynamic complexity of the system, where 
the A, B . . . .  terms depend only on the initial condition x0, and where the exponents 
o~,/3 . . . .  depend on the parameters of  the system. 

In general, the exponents a,/3 . . . .  are complex and it is clear that, if  even one of 
the exponents has a positive real part, then part of the solution of x (t) will increase 
without bound as t increases and the system is seen to be unstable (since e '~t ~ oo 

as t ~ ~ if the real part o f ~  is positive). 
Stability therefore is governed only by the real parts of  the exponents or,/3 . . . . .  I f  

our main concern is with stability, we therefore look in detail at these exponents. Let 
the dynamic systems have the mathematical model H(s )  = P ( s ) / Q ( s ) .  Then the 
exponents are the solution of the equation Q (s) = 0 (the auxiliary equation). These 
exponents are also called the poles of  H(s) .  Solutions of  the equation P(s )  = 0 are 
called the zeros of  H(s) .  It is useful to plot the poles and zeros of  a system in the 
complex plane. Poles (marked X) and zeros (marked 0) appear always on the real axis 
or in complex conjugate pairs, arranged symmetrically above and below the real axis. 

Recalling that if any exponent (pole) has a positive real part then the system is 
unstable, we can see that if  any pole is in the fight half of  the pole-zero diagram then 
the system Z is unstable and this is a major stability test for a system describable by 
a transfer function G (s). 
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Table 7.2 S tabi l i ty  aspec ts  o f  sy s t em mode l s  

System model Stability governed by 

Differential equation Roots of auxiliary equation 
Transfer function Poles of transfer function 
System matrix Eigenvalues 

Therefore the solution yielded by a system after perturbation is governed by the 
roots o f  its auxiliary equation if the system model is a transfer function, and by the 
roots of  the characteristic equation (i.e. by the eigenvalues) if  the model is a matrix. 
The situation is summarised in Table 7.2. 

Control theory uses stability tests straightforwardly based on the information in 
Table 7.1 to yield qualitative stability information ( ' the system is stable' or ' the system 
is unstable')  from differential equations, difference equations, transfer functions or 
system matrices. 

The three forms of  tests in Table 7.2 are all virtually the same test with relabelled 
variables. They all suffer from the same disadvantage - each test requires the solution 
of  an equation of  the form 

s n - + - a n _ l s n - l w . . . q - a l s + a o = O  (7.2) 

In detail this means finding every complex number ~ that satisfies 

oln q- a n - I  ot n - I  -]- • • " + alot -k- ao = 0 (7.3) 

to yield the set o f  complex numbers {oq . . . . .  Otn } which are the roots required by the 
stability test that is to be administered. 

I f  in eqn. 7.2, n < 2, the solution follows 'almost by inspection' i f 2  < n < 4, 
then we can use analytic methods (Tartaglia's method for n = 3, Ferrari 's method 
for n = 4); while if  n > 4 then, by the celebrated proof  due to Abel, no analytic 
solution can exist (see Turnbull (1963) and for a detailed discussion, Burnside and 
Panton (1892)). 

It is, of  course, possible to solve any particular equation of  any order compu- 
rationally, provided that it has numerical coefficients throughout. However, in the 
inevitable iterations of  a systems design project it is very useful to be able to work, 
at least partially, with as yet unassigned coefficients. 

Thus, for n > 4, it would be extremely useful to be able to answer the question 
(applied to eqn. 7.2 and using only a knowledge of  the coefficients [~i]): in what 
region of  the complex plane do the roots [c~i] lie? 
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7B The ingenious method of Hurwitz 

One solution to the problem came about as follows. The engineer A.B. Stodola, working 
on the dynamics o f  water-driven turbine systems, had been able already in 1893 to solve 
the stability problems that arose from his highly approximated model o f  order 3 (n = 3 
in our eqn. 7.2). Although he was not in a direct position to apply the tests outlined in 
our Table 7.2 (not yet invented), he was equivalently able to apply the known work o f  
Maxwell (1868) on systems o f  that order. 

However, when Stodola produced a more complete model, with fewer approxima- 
tions, for  his turbine systems, he encountered the same problems that are described 
here. In modern terms, he wanted to know the location o f  the roots oti o f  eqn. 7.2from a 
knowledge o f  the coefficients ai. The mathematician, A. Hurwitz, working at the same 
institution (ETH Zurich) as Stodola produced the Hurwitz criterion to solve precisely 
this problem. Stodola was able immediately to apply the criterion to ensure the stability 
o f  the design for  a new hydro-electric power station that was being built at Davos. 

Almost simultaneously, and independently, the Cambridge mathematician 
E.J. Routh developed an equivalent test, now called the Routh array test, to achieve 
exactly the same result as the Hurwitz criterion. Many control engineering texts 
explain one or other o f  the tests and with loose terminology indeed refer to it as the 
Routh-Hurwitz criterion. 

Notice carefully that the Hurwitz criterion and the Routh array test apply to differ- 
ential equations and hence also to the transfer functions and A matrices corresponding 
to such differential equations. They cannot be used to determine the stability properties 
o f  difference equations, since for difference equations a different question has to be 
asked; i.e. are all the roots ot i inside the unit circle in the complex plane? Equivalent to 
the Hurwitz test for  differential equations is the Jury test for difference equations, (See 
Kuo (2002) for details o f  the Jury test.) Unfortunately, Jury's test can be unwieldy and 
this writer finds the so-called w transformation method preferable. In this method, the 
difference equation is transformed into a differential equation that has the same stability 
properties. The differential equation, obtained by transformation, is then tested as usual 
by (say) the Hurwitz method. 

7.3 Linear system stability tests 

Table 7.3 summarises the stability tests that we have available for linear systems. 
Frequency response methods are widely used to synthesise closed loop systems 

having predetermined stability characteristics (refer back to Chapter 4). 

7.4 Stability margin 

From what has already been said, it can be inferred that there is a boundary between 
stable and unstable systems. A usable system must not only be stable but it must be 
away from the boundary of instability by some sufficient safety margin. 



System description Recommended stability test 
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Continuous time systems 
Differential equations 
Transfer functions 
System matrices 

Discrete time systems 
Difference equations 
Transfer functions 
System matrices 

res 

Roots of auxiliary equation 
Poles 
Eigenvalues 
Apply Hurwitz or Routh criterion 

Roots of auxiliary equation 
Poles 
Eigenvalues 
Jury test or w transformation then Hurwitz test 

Figure 7.6 

,onse 

a l l  responses are 
tOPrrOlogically 

different 
initial 
perturbations 

Table 7.3 Linear system stability tests 

time 

The family of  responses to perturbations of different magnitudes for a 
linear system 

7.5 Stability tests for non-linear systems 

Why stability testing of non-linear systems is difficult 

For a linear system, all solutions are 'topologically similar'. For instance (Figure 7.6), 
for a linear system, all responses to initial perturbations of  different magnitudes are 
similar (in a geometric sense). Thus if an initial perturbation p(0) causes a response 
x(t) then a scaled up perturbation kp(O) will cause a scaled up response kx(t). 

However, the behaviour of  a non-linear system can exhibit many surprising fea- 
tures. For instance, it is easy to synthesise a non-linear system whose response to two 
different initial perturbations pl (0), p2 (0) is as shown in Figure 7.7. 

It should be immediately obvious that even the definition of  stability for a non- 
linear system will need to be carefully thought out. 
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J 
p2(O) 

Pl(O) ~ ~  

time 

Figure 7. 7 It is possible for a non-linear system to be stable for a perturbation 
Pl (0) while being unstable for the perturbation P2 (0) 

(a) x 

time 

(b) dx 

Y 
Figure 7.8 a A time response 

b The same response plotted in the phase plane 

7.6 Local and global stability 

In this treatment we consider non-linear differential equations and operate in the 
phase plane, thus effectively limiting illustrations, although not results, to second 
order systems. (We note in passing that non-linear differential equations do not 
yield transfer functions, poles, matrices, eigenvalues, frequency response descrip- 
tions, superimposable time responses or decomposable time solutions - i.e. auxiliary 
equations and complementary functions.) 

The response to an initial perturbation as in Figure 7.8a can also be shown in the 
phase plane as Figure 7.8b, where time is a parameter along the trajectory. 
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region of 
local stability 

Figure 7.9 A region of local stability in the phase plane 

A non-linear system where solutions starting at all points in the phase plane tend 
to the origin will be called globally stable - we can imagine that the origin is an 
attractor of solutions and that the domain of attraction is the whole of the phase plane. 

In the case when the domain of attraction of the origin is a finite region in the 
phase plane, we call the system locally stable around the origin (Figure 7.9). 

7.7 Lyapunov's second (direct) method for stability determination 

Lyapunov's second method (often equivalently referred to as his direct method has 
the following properties: 

(i) It can be understood most rapidly by reference to the energy contained in a 
system and the rate of change of that energy. 

(ii) Notwithstanding (i) it can be applied to abstract mathematical systems in which 
energy cannot be defined. 

(iii) It has a very valuable geometric interpretation. 

We can bring point (i) to life by noting that a moving railway train whose brakes 
are applied will come to rest when its kinetic energy has all been dissipated in the 
brakes. I f  we wanted to calculate the stopping distance of such a train, it is possible 
to imagine using a method based on energy and its rate of change to do this. Moving 
to a second viewpoint, it is obvious that the ball-in-a-cup is at a point of  minimum 
potential energy whereas the ball-on-a-dome is at a point of maximum potential 
energy (Figure 7.10). The relation between the energy minimum/maximum and the 
stability/instability of  the balls is no accident. 

The geometric interpretation of Lyapunov's second method is that 'a  system is 
stable to the origin provided that every closed contour described by the so-called 
Lyanupov V function is always penetrated from outside to inside by solution trajec- 
tories of  the differential equation and never in the reverse direction (Figure 7.11). 
Notice that some V functions will fail to confirm the stability of some stable systems 
as illustrated in Figure 7.12. 
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(a) 

Figure 7,10 a Ball in a cup 
b Ball on a d o m e  

contour described 
V function 

solution 
trajectory 

phase 
plane 

all solution 
trajectories 
penetrate from 
outside to inside: 
Lyapunov test 
confirms stability 
of system 

Figure 7.11 All solutions penetrate the V function contour from outside to inside 

solution 

~ contour described 
by V function 

phase 
plane 

contour is penetrated 
at least once from outside 
to inside: 
stability test fails even 
though system is stable 

Figure 7.12 Contour is penetrated from inside to outside - stability test fails 

Lyapunov's  test fails because at least one trajectory penetrates from inside to 
outside. We can see that the Lyanupov test is a sufficient condition for stability - it is 
not necessary. 

7C Geometric interpretation of Lyapunov's second method 

Consider a solution trajectory x(t) crossing a contour o f  constant V on its way towards 
the origin o f  the phase plane (Figure 7.13). Let the tangent to x ( t ) be k (t ) and let grad 
V and-grad V be drawn in as shown (Figure 7,14). 
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Figure 7.13 

x(O 

~ ntour of 
nstant V 

origin of 
• phase plane 

A trajectory crosses a contour o f  the V funct ion 

v x(t) 

 ontour 

o i?in ( v v  

Figure 7,14 Figure 7.13 enhanced by gradient vector and tangent 

Define 

( vv ) 1 = ll~V-I[' x (,)  indicates innerproduct 

i.e. I is the projection o f  x onto the gradient vector V V. Note from Figure 7.14 that 1 
is a vector, orthogonal to the V contour and that i f  I is negative, pointing towards the 
origin for every solution x(t)  and for  every V contour, then the system is stable to the 
origin within the outermost o f  the V contours investigated. 

Assume that V is positive definite and that lines o f  constant V form an increasing 
basin with the origin at its lowest point. Then the usual test that dV/dt must be negative 
definite for stability to the origin can be seen to be the same as asking that the vector 1 
in Figure 7.14 should point inwards. This is so since 

dV dV dx 

dt dx dt 

which is the same (except for  a scaling factor) as the expression.for 1 in the figure, 
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7.8 W h a t  sets the  l imits  on  the  contro l  p e r f o r m a n c e ?  

Let G(s) be a model for any process whatever, connected into a control loop with a 
controller D(s) whose transfer function is under our control. Let the overall model 
of the loop be represented by H(s) (see Figure 7.15). 

We ask: For a given G(s) can we, by choice of D(s), synthesise any H(s) whatever? 
The following discussion is a continuation of an earlier discussion in Section 3.1. 

From eqns. 3.4 and 3.3 (repeated here for convenience) we know that the overall 
transfer function H(s) of the loop is (3.4) 

G(s)D(s) 
H(s) -- 

1 + G(s)D(s) 

and that the controller D(s) can be chosen using (3.3) 

H(s) 
D(s) = 

G(s)(1 - H(s)) 

As an illustration of an ambitious design, let 

1 
G(s) - 

1 + 1000s 

i.e. G(s) has a time constant of 1000 s. We ask: can the controlled system be forced 
to have a transfer function of 

1 
/ 4 ( s )  _ 

l + s  

by the connection of a suitable controller, i.e. can the system, when under control, be 
forced to respond one thousand times faster, with a time constant of one second? 

This is a generic question of great practical importance: what sets an upper limit 
on the performance that can be obtained by adding control to a particular process G? 
The complete answer will not be found by application of control theory but let us 
continue the example and then discuss the result. 

to be chosen fixed 

\ J 
" ~  given 

Figure 7.15 Choosing D(s) to achieve a given H(s) 
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o r  

Putting the values into the equation for D(s) yields 
1 

l + s  
D(s) = 1 1 

l + 1 0 0 0 s  1 l 
l+s  

1 + 1000s  u(s) 

e(s) 
u ( s )  = 

s 

H(s)  

G(s)(1 - H(s))  

s e(s) 

+ 1000 e(s) 

This controller can be realised by the hardware of Figure 7.16. 
Physically there is no reason why the system of Figure 7.16 cannot be built. 

However, we note that, when the value v is changed suddenly to produce an error 
(v - y) the output from the controller will instantaneously be 1000 (v - y), which 
may saturate the actuator of the process G(s) for any significant perturbation of v 
and, additionally, noise entering the loop may be expected to cause problems. Thus, 
we conclude that: if we are over-ambitious in our attempt to obtain high performance, 
we may meet limits caused by the finite power rating of signals that the process G(s) 
can receive. 

However, in applications we frequently do need to work around the loop from 
small sensor signals whose task is to carry information to the point where a large load 
of one sort or another may have to be moved, sometimes very rapidly. Such targets 
are not achievable by using large numerical gains in control loops but rather by power 
amplification. 

To progress, consider particular applications. Imagine a hydro-electric power sta- 
tion where a huge controlled valve varies the flow of water to a set of  turbines driving 
generators to vary the power generated and hence maintain the frequency of the whole 
supply. Such an application can be found at the Swedish hydro generating plant at 
Harspranget near the Arctic Circle. A delicate frequency sensor produces a signal of  
only a few mV and a closed loop system must drive the very large water valve in this 
application. This is achieved through an increasing sequence of amplifiers, motor 
generators and finally through a hydraulic actuator (Figure 7.17). This enormous 
amplification is seen to be stage-wise power amplification and not simply multipli- 
cation of gain. Most other applications will meet a maximum rate constraint in the 
form of the diameter of  a pipe, the capacity of  a heating burner, the power limitation 
of a motor or even a biological constraint such as that on the rate of  organism growth. 

D ( S )  

- / e(s) /s  

Figure 7.16 A hardware realisation to synthesise the required controller D(s) 
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Figure 7.17 How power  amplification is obtained in hydro frequency control 

7.9 How robust against changes in the process is a moderately 
ambitious control loop? 

Suppose that a control loop is designed to improve the rate of response of a process 
G(s)  by a factor of 10 times. How robust will the resulting loop be against changes 
in the process? We take a very simple example where 

1 
G(s)  - 

l + s  

and we shall design a controller D(s)  such that the resulting closed loop H(s )  has 
the transfer function 

1 10 
H(s )  . . . .  

1 +0.1s  1 0 + s  

so that the closed loop system will respond ten times faster than the uncontrolled 
process. The necessary controller will have the model (see again Figure 7.15) 

D(s)  = 

t0 
H(s )  10+s 10(1 + s) 

s 

This controller in closed loop with the given G(s)  will produce the required transfer 
function H (s). 

The purpose of this section is to check the effect of process changes on closed loop 
performance. We therefore postulate a significant but feasible change in the process 
time constant to yield the modified process model 

1 
Gt(s)  - _ _  

1 + 1.4s 
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and calculate the resulting model, say H' (s ) ,  of  the closed loop as 

1 1 0 ( l + s )  
H'(s) = 1+1.4s s _ _ 10(1 + s) 

1 10(l+s) 1.4s 2 + l l s  + 10 
1 + 1+1.4~ s 

Ht(s) has two real poles at approximately s = - 2  and s = - 5  so it is not 
immediately obvious how the response of  H'(s) will differ from that o f  H(s) (one 
pole at s = - 10). To investigate this we shall calculate the step response of  H ~ (s)and 
compare it with that o f  H(s). 

(As a piece of  reinforcement learning, we note that the step response of  H'(s) can 
be found by taking the inverse Laplace transform of  (H '  (s) u (s)), where u (s) = 1/s is 
the transform of  a unit step time function. Alternatively, we can argue that the response 
of  Ht(s) to a unit step must be the integral o f  the impulse response o f  H ' (s ) .  Since in 
the Laplace domain, the operation of  integration is accomplished by multiplication by 
1/s, we again need to introduce this term before inverse transformation. In this short 
reminder, we have shown that the possibly puzzling fact that 1/s is simultaneously 
the transform of  a unit step time function as well as the Lapalace domain variable 
representing integration does not lead to any inconsistency.) 

Therefore the step response of  H'(s) as a time function will be found by inverse 
Laplace transfomation as 

) 
(1.4s 2 + l l s  + 10) 

Figure 7.18a shows plots o f  the step responses o f  H(s), I-F(s) with, for comparison, 
those of  the processes G(s), G~(s). 

(a) 1.5 

0.5 

o 
o 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 

time (seconds) 

- -  Response of  G(s) 
- - - Response of  H(s) 

- Response o f  H'(s)  
-.- Response o f  G'(s)  

(b) 1.05 t esposeof s l " Response of  H'(s)  

0.95 

0.9 

0.85 . . . . . . . . . . . . . . . . . . . . . . .  
0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 

time (seconds) 

Figure 7.18 a The step responses of  processes G (s), G'(s)  alone and under closed 
loop control ( H (s), H' (s) ) 

b Detail showing overshoot in response o f  H~(s) 
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The response of HI(s) is remarkably close to that of H(s), considering the large 
change in the process that has taken place. Closer examination (Figure 7.18b) shows 
however that the response of H'(s) suffers from an overshoot that decays with a long 
time constant that is a legacy from the failure of the fixed controller D (s) being unable 
to cancel the pole of the changed process G'(s). 

Overall, though, the result confirms the hoped-for robustness of a single feedback 
control in the face of process changes. 

7.10 Limits and constraints on synthesis: summary of points 

Given any process G(s) and any required overall transfer function H(s) it is always 
possible to calculate a controller D (s) to ensure that the required H (s) is obtained by 
substitution of G(s) and H(s) into the relevant equation. 

Clearly in, say, aircraft design, G(s) could be a model of a low performance 
aircraft, H(s) could be the model of a high performance aircraft and G(s) could be 
'turned into' H(s) merely by the addition of a suitable controller D(s). However: 

(i) Not every D(s) that can be written down is physically synthesisable. 
(ii) Even though D(s) may be synthesisable, a very ambitious choice of H(s) will 

necessarily lead to signals of large magnitude being generated during transients, 
necessitating the use of expensive powerful components. 

(iii) A very ambitious choice of H(s) may lead to a control system whose perfor- 
mance is excessively sensitive to small changes in the process characteristics. 

7.11 Systems that are difficult to control: unstable systems 

Unsurprisingly, an inherently unstable system is usually difficult to control. Yet the 
combination of an inherently unstable aircraft, made usable by active stabilisation and 
control, is often attractive on grounds of overall efficiency and such a combination is 
often used in high performance military aircraft design. 

There are also examples of deliberately unstable systems in nature. For instance, 
over many centuries, flying insects have evolved from stable passive long-tailed 
shapes, able to glide without exercise of brain power, to more efficient, but inherently 
unstable, short-tailed versions that include fast-acting measurement and closed-loop 
control and stabilisation. 

Unstable systems have one or more poles in the fight half complex plane and the 
most obvious control strategy would be to cancel the unstable poles by coincident 
right-half-plane controller zeros (Figures 7.19 and 7.20). 

Questions arising are: 

(i) Can complete coincidence between poles and zeros be obtained and 
maintained? 



Figure 7.19 
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An obvious strategy to cancel an unstable pole by a zero at the same 
location in the s plane 

complex 
plane 

fl( (~ ~ ' -  process pole 
controller process  controller zero 
pole zero 

Figure 7.20 The cancellation strategy o f  Figure 7.19 illustrated in the complex 
plane 

(ii) If  complete coincidence cannot be obtained, what are the consequences? 
(iii) If  the method proposed is not workable, what other approaches might be used? 

7D Cancellation of  an unstable pole by a matching zero 
in the controller 

Perfect cancellation of  a pole at s = 1 would imply a term like (s - 1)/(s I) in 
the overall transfer function. However, assume that there is a mismatch of  e in the 
caleulation so that the term above is of  the form 

s - ( 1  +e )  
s - 1  

This term has the step response 

l s - ( l + e )  1 l + e  
s s -  1 s -  1 s ( s -  1) 

equivalent to the time response 

[ \ 1 + ~  
exp(t) ~ - ~ - )  (I - exp(t)) = (1 + e) + exp(t) - (1 + e) exp(t) 

We see that perfect compensation implies that two exponential curves, going off to 
infinity in opposite directions, will precisely sum to zero (Figure Z2D. 

Therefore, cancellation cannot work in practice since the instability is still present 
and we are relying on its effect being cancelled exactly by an equal and opposite effect. 
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(The differential equation would show the complete structure but the transfer function, 
having been subjected to cancellation, masks the true situation.) 

r e s  )orlse 

(I+E) 

time 

Figure 7.21 The components o f  the step response when there is a mismatch 
between pole and compensating zero 

7E Shifting an unstable pole by feedback 

As an alternative to attempted cancellation of  an unstable pole, it may be possible to 
shift the pole by feedback (Figure 7.22). Taking the same unstable process as before, 
we examine the effect of  the feedback shown. The overall transfer function is 

s + l  s + l  

s l + c s + c  ( l + c ) s + c - 1  

and the system is genuinely stabilised provided that c > 1. The literature is fairly sparse 
on the control o f  unstable systems but see Willems (1970) and Takahashi et al. (1970), 

Figure 7.22 Feedback to shift an unstable pole 
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7.12 Systems that  are difficult  to control  - n o n - m i n i m u m  
phase  systems 

Systems with this unwieldy name have the unpleasant characteristic that, when steered 
in one direction, they may initially respond in the opposite direction and only later 
move offin the required direction. For these interesting systems, we ask: 

(i) What features in the mathematical model of a system lead to the behaviour 
described above? 

(ii) What is the motivation for the 'non-minimum phase' naming of the systems? 
(iii) What sort of physical phenomena are responsible for creating the non-minimum 

phase behaviour? 

(i) Right half-plane zeros in the system model can be identified with the behaviour 
(or for a discrete-time model, Z plane zeros outside the unit circle). 

Example The model 

10yk = 9yk-I -- Uk-I + 2Uk-2 

has the pole-zero diagram shown in Figure 7.23a and the step response of 
Figure 7.23b. 

(a) 

( 
unit circle 

© 

Figure 7. 23 

(g) res )onse 

1 
J 

/ 7  
10 20 

k 

a Pole-zero diagram for a simple non-minimum phase system 
b Step response of the system whose pole zero diagram in (a) 
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(ii) Systems having no right half-plane singularities are called minimum phase sys- 
tems. Systems having right half-plane singularities are called non-minimum 
phase systems. Therefore we say that a strictly stable system is minimum phase 
if it has no finite zeros in the right half-plane. 

Caution: Clearly the numerators (1 + s) and (s ÷ 1) are identical. However, 
the numerators (1 - s) and (s - 1) are very different in their phase characteristics. 
The first goes from 0 to - 9 0  ° with increasing frequency whereas the second goes 
from + 180 ° to ÷90 ° with increasing frequency. 

(iii) Physical phenomena that give rise to non-minimum phase behaviour. It is usually 
possible to correlate non-minimum phase indicators in mathematical models with 
physical phenomena. Examples are: 

• Control of  the level of  a volume of boiling water. When cold water is added 
to raise the level of  a mass of boiling water, the initial effect is the collapse 
of  bubbles with consequent initial fall in water level. 

• Hydro-electricity generation. A requirement to increase the level of  gener- 
ated power from certain hydro-electric configurations results in an initial 
decrease in power during the time that the water in the pipeline feeding the 
turbines accelerates to the necessary increased velocity. 

• Sequences of  interacting processes. Suppose that a sequence of interacting 
processes is operating in a steady state and that it is to be brought to a 
new steady state. Quite frequently the transient behaviour will move in 
the opposite direction to that intended. In a general sense this is because, 
at a call to increase activity, early processes in a chain immediately use 
additional shared resources whereas the benefits of  their increased activity 
take time to work through the system. 

• Spatially distributed systems, being limiting cases of  interconnected 
processes, often exhibit non-minimum phase characteristics. 

General points: For a minimum phase system, the two components of  the frequency 
response (i.e. gain and phase) are related by a known fixed bijective function - 
effectively meaning that either of  the components contains all the frequency response 
information that exists. This fact is exploited in Bode's theorems on stability (see 
Chapter 5). 

7.13 Some interesting theoretical limitations on performance 

It is well known that Shannon's theorem sets a fundamental upper limit on the 
maximum error-free capacity of a communication channel. Less well known but 
important in the control field are a number of  other fundamental design limitations, 
of which examples will now be given. 

7.13.1 Sensitivity functions and their interrelation 

(These interrelations play a major role in the loop shaping techniques that will be 
introduced in Chapter 16.) 
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7F Motivation for the name: non-minimum phase systems 

Consider first the 'usual' system of  transfer function 

(1 + s r l )  
G1 (s) = 

(1 + sT2)(1 +sT3) 

and compare it with the transfer function 

(1 - STl) 
G2(s) = 

(1 + sT2)(1 + sT 3) 

It is clear that both transfer functions yieM identical plots of  magnitude as frequency 
varies. 

However, the phase plots differ markedly, for, as the phase plot corresponding to 
the (I + sT1) term in G t moves from zero to +90 ° so the phase plot for the (1 - sT2) 
term in G2 moves from zero to - 9 0  °. Thus the high frequency asymptote for the phase 
angle is -90° for  Gl but -270° for  G2. 

Alternatively consider 

(s - 2) 
G3(s) = 

(s + 2) 

This has constant magnitude at all frequencies but the phase angle is + 180 ° at low 
frequencies decreasing to 0 ° at high frequencies. 

I f  two transfer functions are strictly stable with the same gain at each frequency 
then the one with all zeros in the left half plane will have least phase shift. Figure 7.24 
illustrates the point. 

(a) (b) 

X 

complex 
0 plane 

0 

× 

× 

× 

complex 
plane 

O 

0 

Figure 7.24 a The pole-zero  diagram for a normal (minimum phase) 
system 

b The po le -zero  diagram for a non-minimum phase system 
that has the same characteristics as the system in (a) 
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W 

Figure 7. 25 Feedback configuration 

Consider a process G(s) in a closed loop with a controller D(s) (see Figure 7.25). 
We define two dimensionless sensitivity functions T and S as follows 

1 GD 
S--  T - -  

1 + G D  1 +GD 

and note that at any frequency co where T(co) = 1 we will have y---v ,  i.e. 
output = desired value. 

Thus T links output y with desired value v, whereas the function S links 
disturbance output y with the disturbance input w. 

Relations between T and S and their consequences. 
By inspection, 

S ( s ) + T ( s ) = l  for a l l s  

This relation can be regarded as a constraint on design, preventing independent 
choices being made in regard to reference following and disturbance rejection 
performances. 

7.13.2 Integral constraints in the time domain 

Example 1 I f  the open loop combination G(s) ,  D(s) has the form 

P(S) 
s2Q(s) (7.4) 

i.e. has two poles (a double integrator) at the origin, assume the closed loop to be 
stable. Then, irrespective of  what other (linear) elements the brackets in eqn. 7.4 
contain, the error e(t) following the application of  a unit step applied at t = 0 must 
satisfy the relation 

O °° e(t) dt 0 

so that equal areas of  positive and negative error must result as indicated in Figure 7.26. 
Illustration of the effect discussed as Example 1 

Assume that 

10s + 16 
GD--  

s 2 
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closed loop 
step response 

0.08 ~ equal areas 

/ 0.06 

0.04 
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O: 2 0.5 1 1.5 
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Figure 7.26 The closed loop step response of  the open loop system G(s)D(s) = 
(10s + 16)/s 2 

Note the equal areas marked, confirming that the double integrator leads to the error 
e(t ) satisfying the equation 
f o  e(Odt = 0 
following the application of  a step at t = 0 

so that 

GD 10s + 16 

1 + GD s 2 + 10s + 16 

with poles at - 2 ,  - 8  and a step response in the time domain as shown in Figure 7.26. 
If the open loop combination GD has fight half plane poles or zeros then evaluation 

of the integral 

o °° e(t) dt 

following the application of a step will, in each case, show that there are inevitable 
under- and overshoots in the closed loop responses, so that for instance, when a real 
open loop zero is present in the right half plane then the step response will inevitably 
begin with a negative-going response that is typical of so-called non-minimum phase 
systems (see Section 7F). 

7.13.3 Design constraints caused by Bode's theorem 

Bode's theorem states that 

f0 °° In dw 0 IS(jco) l 
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This shows that the average value o f  the sensitivity function S must be 1 on the 
imaginary axis so that if  very small values o f  S are forced on the system for some 
range of  frequencies, values greater than 1 will have to be accepted as pay-back over 
some other frequency range. 

If  one imagines that the loop can be shaped so that the undesirably high values 
o f  S occur at frequencies well outside the system bandwidth, this strategy turns out 
to be prevented by other constraints as Seron et al. (1997) shows (this is yet another 
manifestation o f  the well-known NFL [No Free Lunch] syndrome!). 

This section is based on Seron et al. (1997), an interesting and comprehensive 
reference where more results can be found, and on Freudenberg and Looze (1985). 
Bode's theorem can be found in Bode (1945). 

7G Mapping of  complex functions - a few points that underlie 
classical control theory 

Given y = f (x), x and y real scalar-valued functions, there is only one path for  x to 
follow, L e. from - c ~  to o0 and the resulting value o f  y is the usual 'graph" o f  y against x. 
No variation is possible. 

However, for a complex (valued) function, g = f (s), with complex argument s, the 
values taken by g depend on the path chosen for  s in the complex plane. For instance 
(McCollum and Brown, 1965, p. 85), i f  s is allowed to vary as shown in Figure Z27a 
then G(s) = 10/(s - 2) varies as shown in Figure 7.27b. 

(a) jro 
axis 

B 

A 

C 

sX=2 complex 
plane 
(s plane) 

(b) 

~ D 

C complex plane 
(g(s) plane) 

Figure 7.27 a A path in the complex plane 
b The corresponding path for G(s)  = 10/(s - 2) 

Notice that the left contour encircles the pole at s = 2 in a clockwise direction, 
whereas the corresponding contour for  g encircles the origin o f  the complex plane 
in an anti-clockwise direction. Further investigation would show that the direction o f  
rotation o f  the g curve and its encirclement (or noO of  the origin is directly related to the 
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presence or absence of poles and zeros within the region that is encircled by the s curve. 
Figure. 7.28 gives further examples. 

(a) 

(c) 
I 

complex 
s plane 

pole encircled 
clockwise 

zero encircled 
clockwise 

(b) 

complex 
~ plane 

rigin encircled 
antieloekwise 

origin encircled 
clockwise 

(e) 

tg~ 

/.~j ] 

pole and zero 
encircled 

no 
singularities 
encircled 

origin not 
encircled 

origin not 
encircled 

Figure 7.28 The left hand diagrams a, c, e, g show paths in the complex 
s plane. The right hand diagrams b, d, f ,  h show corresponding 
paths in the G(s) plane 

The foregoing material is part of the subject "functions of a complex variable' which 
underpins all of the control work (stability, poles and zeros, etc.) that relies on transfer 
functions. 

Returning to the mapping and encirclement discussion, i f  s is allowed to encircle the 
right half of the complex plane, then the behaviour of the transfer function G(s), as s 
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varies, can indicate the presence of  poles in that region. Since such poles imply system 
instability, this idea forms the basis for a major stability test - the Nyquist criterion. 

Because we are interested principally in negative feedback systems, the function 
that we need to consider is not really G(s) but rather G(s)/[1 + G(s)] .  The form o f  
the denominator shifts the emphasis from the origin to the point -1  + jO; this is the 
point whose encirclement or non-encirclement yields stability in formation for feedback : 
systems. 

7H Derivatives of a complex function G(s) 

Not all complex functions are well behaved in the complex plane. Some are able to 
possess more than one value of  derivative at the same point, according to the direction 
in which s is varied. Such behaviour is not possible when the function satisfies the 
Cauchy-Riemann conditions at almost all points in the plane. The function is then 
called an analytic function. 

71 Singularities of a complex function G(s) 

Singularities are the points at which G, or its derivatives, do not exist. The location and 
nature o f  the singularities determine the behaviour of  the function in the entire plane. 

There are three types of  singularities: poles, essential singularities and branch 
points. I f  a positive integer n exists such that 

lira (s - sl)nG(s) = k 
s---~$1 

where k is some finite non-zero value, then Sl is a pole of  G(s) of  order n. 
An essential singularity, roughly, is a pole of  infinite order In control theory, 

essential singularities usually arise as models of  dead time processes. 
A branch point is associated with a multivaluedfunction such as ,cry. 

Behaviour of  G(s) near to a pole 
G(s) may be expanded in a Taylor series about a pole at Sl as 

(s --  s 1 )n G(s )  = A - n  + A _ n + l  (s - s I ) + . - -  + A _  1 (s - s 1 ) n -  1 

+ Bo(s - Sl) n + BI(S - Sl) n+l  + . - -  

Hence 

A-n  A - ( n - l )  A - 2  A - 1  
G(s) = - -  ~ + . . . + - -  + - -  

(S - -  S l )  n (S - -  S l )  n - 1  (S - -  S1)  2 (S - -  S 1) 

+ BO + Bl(s - s l )  + " .  
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which is called a Laurent series (study o f  the Laurent series and its connection with the 
behaviour o f  functions in the time domain can be pursued in Truxal (1955), pp. 4-29). 

A-1 is called the residue o f  G(s) at s. Near to the pole, the term in A-1 dominates 
the series. 

Source material and suggestions for  further reading to support the topics o f  this 
chapter will be found in Chapter 19. 



Chapter 8 

Some practical aspects of control design, 
justification and implementation 

8.1 How efficient is it to control an unknown process by a 
controller that consists only of a high gain of  value C 
that in the limit becomes a relay controller? 

In view of the evident efficiency of feedback controllers in controlling unknown 
phenomena, is it not feasible to attempt control of all processes by some very simple 
standard strategy? 

The simplest possible controller (Figure 8.1) involves just multiplication of the 
error by a scalar C; the overall transfer function is CG(s)/(1 + CG(s)) and if C is 
very high, then the overall transfer function is approximately 

CG(s) 
- 1  

CG(s) 

i.e. provided that C >> 1 near-perfect control can be obtained. 

Question: What happens as C --+ oo? Will this give better and better control? 
Answer: 

(i) As C is increased, the system may become unstable and unusable. 
(ii) Assuming that the system remains stable as C ~ oo (another question left for 

the moment is when does this arise?), then we have arrived at a switched (relay) 

controller 

Figure 8.1 The simplest possible controller - a gain C 
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switching 
controller 

i i  

Figure 8.2 The limiting condition: as c --+ ~ the controller becomes a relay 

control system (Figure 8.2). Such a system does indeed have a high performance 
and the low cost of a switching controller also makes such systems economically 
attractive. However, there are two disadvantages of (infinite gain) switching 
systems: 

(a) They are essentially non-linear (for instance, they respond (initially) in the 
same way to the input step v = 1 as to the input step v = 10). 

(b) The system never, under any circumstances, comes to rest: full power, in 
one direction or the other, is always being applied. For many applications, 
such behaviour is not acceptable. 

Summary: A controller that consists only of a high gain C may give good control of 
a totally unknown process, though the upper bound for C may be set at a low value 
by stability considerations. 

Where stability conditions allow, increasing the gain C will eventually result in 
a relay as the controller. Such a relay does indeed frequently give good control of 
an unknown process but brings problems (non-linearity, continuous oscillation) of 
its own. 
Despite these disadvantages, relay control, also known as on-offcontrol, has signifi- 
cant practical advantages that lead to its being widely applied across industry. The 
chief of these advantages is the very low cost of on-off  actuators, compared with 
the continuously variable actuators needed for continuous control. On-off control 
manages to be surprisingly versatile. For instance it can: 

(i) achieve temperature control of a gas fired furnace by switching between high 
and low gas/air flow rates using only a pair of simple solenoid valves; 

(ii) operate conveyors or other large material handling devices at any chosen average 
flow rate by alternately switching between two different ratios of a gear-box; 

(iii) achieve continuously variable control of many devices, such as electric motors, 
by on-off modulation of an electrical power supply. For large applications 
the savings achieved by avoiding the need for continuously variable ampli- 
fiers/actuators often outweigh any disadvantage of the discontinuous operation. 

Relay control systems can be analysed and designed using phase-plane and describ- 
ing function methods - see Chapter 13 - and there is a specialist methodology 
for relay control systems that can be found in, for instance, Kochenburger (1950) 
and Flugge-Lotz (1968), two of the pioneers in the field. Tsien (1954) devotes an 
interesting chapter to the topic as do many of the older books on non-linear control. 
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8.2 An off-the-shelf approach to the control of 
an unknown process 

Perhaps 80% of control problems encountered in industry can be solved routinely and 
do not require an extensive modelling and control design exercise. For such processes, 
a fixed structure commercially purchased three-term controller will probably prove 
adequate. Such devices can be discrete instruments fixed in racks or they may be 
invisible library algorithms within an overall monitoring and control package. 

8.2.1 The three-term controller 

Three-term controllers are the control practitioners' everyday workhorses. They are 
highly successful in practical situations but they are looked down upon by theo- 
reticians and are not even mentioned in many undergraduate texts. The idea of a 
three-term controller, already introduced in Section 5.10, is: 

(i) To use a gain C that is to be set not too high, to avoid the problems ofnon-linearity 
and continuous oscillation that can arise from too high a C value. 

(ii) To add an integrator into the controller to ensure that, regardless of the value of 
C, a constant desired value v will result (after transients have died away) in a 
constant measured value y, with y being exactly equal to v. 

(iii) To add a differentiator into the controller to give independent control of the 
degree of damping. 

8.2.2 Illustration o f  the value of  an integral term in 
removing any constant error 

Assume that the process to be controlled has the transfer function 

1 
G(s) - 

s + l  

In closed loop in series with a simple controller of  gain C, the steady state response 
to a unit step, as t --+ ec, is 

C C 
as s - +  O--  

s + l + C  I + C  

Thus, for finite C, there is a constant error of 1/(1 + C). When an integrator is added 
to the controller (in parallel with the gain C), the steady state response to a unit step is 

s C + l  

s(s + 1) + s C  + 1 
1 as s - - - r0  

i.e. with the integrator present, the steady state error is zero. 
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8.2.3 Illustration of  the value of a derivative term to 
control the degree of damping 

The transfer function o f  the closed loop system of  Figure 8.3a is 

C 

(s + 1)(s + 3) + C 

If  we now fix C at some numerical value, say C = 65, the closed loop poles will be 
located at 

s = - 2  4- ~ f i - -  C = - 2 + j 8  

Very light damping is indicated by these pole positions. 
If, now, referring to Figure 8.3b, a derivative term us  is included in the controller, 

then the closed loop transfer function becomes 

C +ots 
(s + 1)(s + 3) + C + c~s 

and, keeping the value o f  C set at C = 65, it is found that the closed loop poles are 
now located at 

s = -  2 +  7 4- 2 +  - 3 - C  

And it can be seen that, by choice o f  c~, the poles can be moved to positions giving 
any required degree of  damping, although of  course the effects o f  the introduced zero 
on overall performance will need to be considered. 

8.2.4 How can the three coefficients of a three-term controller be 
chosen quickly in practice? 

For most processes that need to be controlled, we cannot expect to have available an 
accurate or even an approximate model, since modelling is an expensive and time- 
consuming procedure. For routine situations, all we wish to know is how to set the 

(a) 

(b) 

+V+ 1.¢ 
~' (s+ 1)(s+3) 

(s+ l)(s+3) 

Figure 8.3 a A system under closed loop control with a simple controller o f  gain C 
b The system of  (a), enhanced by a derivative term 
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Figure 8.4 A three-term controller 
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Figure 8.5 How the coefficients of  eqn. 8.1 are determined 

three coefficients: gain, derivative action, integral action, that are required by the 
three-term controller (Figure 8.4). There are three basic approaches. 

8.2.4.1 To a p p l y  a step to the  process  that  is to be  contro l l ed  a n d  
use  the  re sponse  to ca lcu la te  the  coef f i c i ents  

We shall outline that approach and give an illustrative example. 
This approach is simple and reliable but it does require that the process is available 
and at one's disposal to have an open-loop step test performed. The procedure is 
as follows. The process, regardless of its actual (and in any case usually unknown) 
structure will be modelled by the approximation 

Ke-ST2 
G'(s) -- (8.1) 

(1 + sT1) 

i.e. by a first order system in series with a finite time delay T2. The three coefficients 
K, 7"1, T2 are read off from the open-loop step response of the process using the 
graphical construction shown in Figure 8.5. 
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The three controller coefficients are then found from the Ziegler-Nichols (1942) 
equations: 

1.2 T1 
Controller gain C -- 

KT2 

Integral time constant 7"l = 2T2/C 

Derivative time constant TD ---- 0.5CT2 

(8.2) 

Notice carefully that these controller coefficients are suggested to achieve control 
of  the very large class o f  processes that can be approximated by eqn. 8.1 and further 
that the aimed-for step response of  the resulting closed loop system is underdamped 
with the characteristic that the magnitude o f  each overshoot/undershoot shall be one 
quarter of  the previous one. This type of  response may not of  course suit every 
application but the logic behind the choice is that such a response comes near to 
minimising the error criterion 

f0 ° J = le(t)[ dt 

where e(t) represents the error y (t) - v (t) following the application of  an input o f  a 
unit step to the input v at time t = 0. 

Thus the Ziegler-Nichols rules are an attempt to design an optimal controller for 
the unknown process. 

Illustrative example 
We choose as the process that is to be controlled a plant with true model 

4 
G(s) = (8.3) 

(s + 1)(s + 2)(s + 4) 

but to be realistic we don' t  (yet) allow ourselves access to knowledge of  this model - 
only access to its response to a unit step (Figure 8.6a). From that figure and its 
amplification, Figure 8.6b, using the graphical construction given in Figure 8.5, we 
extract the approximate model 

0.5e-0.4s 
G'(s) -- (8.4) 

(1 + 2.12s) 

Figures 8.6c and d compare the actual response with the approximation. 
Then using eqns. 8.2, we find the three-term controller coefficients to be 

1.2T1 (1.2)(2.12) 
Gain C . . . .  12.72 

KT2 (0.5)(0.4) 

Integral time constant = TI = 2T2/C = 0.0629 

Derivative time constant = TO = 0.5CT2 = 2.544 

(8.5) 
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Figure 8.6 a Response of  the process G(s) = 4/[(s  + 1)(s + 2)(s + 4)] to a unit 
step input 

b Response to unit step (graph expanded near origin) 
c Real process response and its approximation 
d Expanded detail from 8.6(c) 

yielding the controller D as 

1 
D(s) = - (15 .89  + 12.72s + 2.544s 2) (8.6) 

S 

and the combination of  controller and process in series as 

4(15.89 + 12.72s + 2.544s 2) 
G(s)D(s) = (8.7) 

s(s + 1)(s + 2)(s + 4 )  

We have now allowed ourselves access to the true model G(s) ,  so that we can 
determine the step response of  the closed loop, containing the three-term controller 
calculated via the approximation route. 

The transfer function of  the closed loop system GD/(1 + GD) is 

GD 4(15.89 + 12.72s + 2.544s 2) 
- -  - ( 8 . 8 )  
1 + GD s((s + 1)(s + 2)(s + 4)) + 4(15.89 + 12.72s + 2.544s 2) 

To find an expression for the step response in the time domain of  the closed loop 
system GD/(1 + GD) shown above, we need to take the Inverse Laplace transform 
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of {(1/s)(GD/1 + GD)} as shown below 

GD 

+,,(! 4   6 9+   2s+2 44s2, ) 
s((s + l)(s + 2)(s + 4) + 4(15.89 + 12.72s + 2.544s 2) 

(8.9) 

If we go to a package for the inversion in one sweep of the above transform, there 
is a danger of losing sight of the nature of the solution, so instead we factorise the 
expression and then take partial fractions to obtain 

f ( t )  __ ¢£_t ( 0 . 7 5  0.04 0.125 
s .4.2.164 -4- s -4-3.374 

1.079(s + 1.17) "] 

s 2 +- 1 .--,~8s + ~--47) ,/ 

(8.10) 

The Fast term has a denominator with complex roots expressible as 

(s + 0.739 + j2.864)(s + 0.739s - j2.864) 

which can also be expressed as 

(s + 0.739) 2 + (2.864) 2 

Still considering the last term in eqn. 8.10, we note that it has the form 

1.079(s + a) 

(s -4- b) 2 -4- 092 

which according to tables (e.g. McCollum and Brown, 1965) has the inverse transform 

f ( t )  = l ~ / ( a  - b) 2 -4- co 2 e - b t  sin(wt -4- 4)) 
O) 

where 

4) = tan-1 ( ~ _  b ) 

and in our case the time function corresponding to the complex term is therefore 

1.079(0.35)(2.896) exp(-O.739t) sin(2.864t -4- 1.42) 

= 1.093 exp(-O.739t) sin(2.864t -4- 1.42) 
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Figure 8. 7 
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and the time function f ( t )  corresponding with eqn. 8.10 can now be written as 

f ( t )  = 0.995 - O.04e -2' 164t + O. 125e -3'374t -+- 1.093e -0"739t sin(2.864t + 1.42) 

(8.11) 

It is easy to see that the response will be dominated by the sinusoidal term in its 
envelope o f  decay and this is confirmed in the plot o f  Figure 8.7. It is clear that a 
good closed loop response meeting the criteria outlined above has been obtained with 
little effort using only information from a single step test of  the process. 

8A How to learn something from the first part of a step response 

The initial part of  a step response gives information about the order of  the process. For 
a first order system, the steepest part of  the response is at the origin but for higher order 
processes the response clings to the time axis before rising. To understand this, let A, B 
be first and second order processes, respectively, and let a, b, c be process parameters 
with obvious meanings. Then the respective step responses are: 

1 ( bl_~_c(ce_bt_be_Ct)) f A ( t ) = ( 1 - - e a t ) ,  fB( t )=-~c  1 +  

and the derivatives are: 

fa( t )  = ae -at and fa(O) = a 

and this value a, the inverse of  the process time constant, represents the steepest part 
o f  the response curve 

1 c) (bce-Ct - bce-bt) = 1 (e_Ct _ e_bt ) 
fB(t)  = b c ( ~  (b - c-----~' 
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It is clear that the initial part o f  the step response of  the second order process B has 
zero slope, since the second term in the expression for the derivative is zero at t = O. 

The step response o f  a linear process and its frequency response both contain exactly 
the Same information and both can be considered to be non-parametric models of  the 
process (as: opposed to transfer function models which have an order and contain 
parameters whose numerical values need to be chosen.) 

8.2.4.2 To fit the controller into a closed loop with the process to be 
controlled and go through a tuning procedure on-line 

The method is if anything more difficult to conduct on a real plant (than approach 
8.2.4.1) since it first requires that the controller with integral and derivative actions 
disabled be fitted into a closed loop with the process. The controller gain C must then 
be increased until the loop oscillates continuously at a constant amplitude. (This is 
not so easy as it sounds!) The controller gain C* that causes continuous oscillation 
of the loop and the period T* of the resulting oscillation are noted. From these two 
pieces of information, the three-term controller coefficients can again be determined 
from (additional) Ziegler-Nichols (1942) rules as follows: 

Controller gain C = 0.6C* 

Integral time constant TI = 0.5 T* 

Derivative time constant TD = 0.125 T* 

(8.12) 

Here is an exercise for the reader to compare the two tuning methods. Starting with 
G(s) as given in eqn. 8.3, devise and apply any theoretical method to determine 
C* and T* as described in this section. Calculate the controller coefficients using 
eqns. 8.12. Compare with the controller coefficients found above in Section 8.2.4.1. 
Comment constructively. 

8.2.4.3 To fit a so-called self-tuning controller into closed loop with the 
process. After a learning period, the controller will hopefully 
have chosen its own coefficients 

There are quite a number of self-tuning algorithms, many of them quite complex. 
Some approaches use an expert system that emulates a skilled human control engineer; 
other approaches emulate approach 8.2.4.2, exciting the loop and then interpreting the 
responses. Every practical self-tuning algorithm must necessarily have some sort of 
confidence test to pass before it can be allowed to implement its choice of  coefficients 
onto the real process. There is an extensive literature. 
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8B New York to San Francisco telephony - an early illustration of 
the spectacular success of feedback in achieving high-fidelity 
amplifications of  signals 

In early long distance telephony, messages travelled along a land line with repeater 
stations (audio frequency amplifiers) at intervals to boost the signal strength. Early 
electronic amplifiers were highly sensitive to variations in thermionic valve (U.S.A. 
tube) characteristics and variations in supply voltage. This meant that the gains were 
not constant and that consistent high fidelity amplification was not possible. If, say, ten 
such amplifiers each reproducing a signal with 90%fidelity were connected in series 
(as repeater stations must be) then the fidelity o f  the overall line wouM be 100(0.9) 10 = 
35%. Because of  the poor robustness of  available repeater amplifiers it was decided that 
no more than six such repeaters could be tolerated along the whole 3000 mile (4800 kin) 
line. The signal strength was kept high by the use o f  massive power cable capable of  
carrying 50 amps and weighing half a ton per mile (300 kg per Ion). 

No doubt motivated by this problem, Harold Bode, Bell Telephone Laboratories, 
c. 1927, invented and implemented feedback amplifiers to produce highly insensitive 
(i.e. gain robust to parameter changes) amplifiers for transcontinental telephony. 

These amplifiers using feedback were of  such high fidelity that 600 could be used 
sequentially as repeater stations when a new New York to San Francisco light weight 
cable was laid in 1941. 

Figures 8.8-8.10 illustrate this example. 

six (non-feedback) repeater amplifiers 
compensating for loss of signal strength 

/ +  
be used to make transmission 
possible 

Figure 8. 8 First trans- US telephone cable. No more than six amplifiers could 
be used because o f  the cumulative distortion effect 

600 feedback repeater amplifiers 

lighl~w~l'ght coaxial cable 

Figure8,9 By 1941. the availability o f  Bode's feedback amplifier allowed 
600 amplifiers to be connected sequentially and a low cost 
lightweight cable to be used f o r  the connection 
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Figure 8.10 

KG Y'= 1 +""--~ u nominal process 

K( G + A G ) u perturbed process 
I+K(G+AG) 

I f  the amplifier gain K is sufficiently high, the feedback 
loop is insensitive to process perturbations AG or gain 
perturbations A K 

8.3 Converting a user's requirements into a control specification 

A user's requirement will usually be application-specific (keeping a ship on a 
desired course to a particular accuracy; dispensing a certain weight of soap pow- 
der; neutralising a liquid effluent before discharge to a river; maximising the yield of 
pharmaceutical product from a given batch of raw material, etc.). 

An unrealistic (oversimplistic) conversion of the user's requirement into a control 
specification, against which the system will be built, will result in the building of 
an unsatisfactory system. This aspect (conversion of a user's requirements into a 
specification) is frequently a weakness in the control design chain. 

Let us switch our thoughts temporarily to the amount of freedom that a designer 
has in designing a simple control loop. First, the control loop will need to be stable 
with a reasonable stability margin. This stability margin will need to be more or less 
the same, regardless of the application; hence, although the designer has to fix the 
stability margin, that margin will be virtually the same regardless of application and 
therefore this aspect cannot be regarded as a variable design parameter. The other 
variable that can be fixed by the control designer is the speed of response or the 
closely related parameter, system bandwidth. Both of these quantities are related in a 
well-defined way with pole locations and with system natural frequency. 

Thus, in the design of a simple control loop, the designer will often be seeking 
to achieve a particular bandwidth or a particular speed of response by fixing pole 
locations, by fixing natural frequency or by fixing bandwidth in the system to be 
synthesised. Figure 8.11 illustrates the design route. 

Two important questions arise: 

Question 1: How can diverse users' requirements be converted into very simple speed 
of response or bandwidth specifications? 

Answer 1: They can't, except in a small minority of cases that are mostly confined to 
the servomechanism field. In most other cases, the designer spends huge proportions 
of his time coping with application-dependent problems, using general engineering 
knowledge and ad hoc methods. 

Question 2: What sets an upper limit on the speed of response (or bandwidth) that 
can be obtained in a particular application? 
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Figure 8.11 Alternative design approaches 

Answer 2: Very interesting! In linear control theory, there are by definition no upper 
limits on anything. Thus, linear control theory can produce a system that will turn a 
supertanker onto a new course in microseconds or less, provided that the linearity is 
not violated. 

Thus, the upper limits on performance are set by factors that do not appear at all 
in the design process. Clearly this is very unsatisfactory! 

In practice, the designer must choose, for example, an electric motor to give 
the acceleration that he needs. As larger and larger motors are considered, so the 
acceleration will approach that given by an unloaded motor. If this acceleration does 
not meet the specification, another approach must be found. The point to note is that 
none of this procedure is part of the control design procedure but is injected by the 
designer in what is usually called engineering interaction with the design process! 

8.4 Methodologies for deciding the scope and attributes of 
automatic control schemes for industrial application 
(methodologies for economic justification of 
investment in automation) 

8.4.1 Methodologies and illustrations 

Given a set of interlinked industrial processes that together constitute a plant produc- 
ing some product from incoming raw materials, control theory and practice will tell 
what might be achieved at each of the processes. The list of all possible schemes that 
might be designed would be formidable indeed. The question we want to consider 
here is: given a particular industrial configuration, how can one describe the scope, 
configuration and functionally of appropriate control systems to be integrated into 
the manufacturing facility in something close to an optimal way. 
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Here we review some of the available methodologies but it has to be said that there 
is a distinct shortage of methodologies - in fact most of those described below were 
originated by the author. The lack of literature is a sign not of  lack of importance of 
the approaches but rather a result of the methods being unglamorous and theoretically 
undemanding, making them unattractive to academics because of their unsuitability 
for publication. 

The first suggestion is to define for a whole production sequence a broad sweep 
performance index of the form 

J = APP(Price at which one tonne of product sells 

- Cost of manufacturing one tonne of product) 

where APP is the annual production, tonnes, of prime product. 
Our broad aim in choosing between alternative strategies will then be to maximise 

J but how do we calculate the cost of  manufacturing one tonne of product? The 
solution is to develop a model of the form shown in Figure 8.12 for every process in the 
production sequence and eventually through the use of these interconnecting models 
we can link right back from product leaving the factory to raw materials entering the 
factory. The operation of the models is self-explanatory but it remains to mention that 
the models have to be parametrised by analysing masses of real industrial data. The 
examples given here as Figures 8.13-8.15 relate to the steel industry and show how the 
product, steel strip, links back to the basic raw materials of iron ore and coking coal. 
The figures given here are realistic but they have been modified for confidentiality 
reasons. The models allow the economic context of  the process to be understood with 
the main areas for possible savings being visible to a large extent by inspection. 

As indicated symbolically in Figure 8.16, how do we decide what automation 
projects to choose and what should be the resource allocation for each? 

Figure 8.17 shows a 'justification histogram' produced by the author, with col- 
leagues, from measurements on 2000 batches of steel strip. It shows that almost 10% 

Figure 8.12 

costs of raw materials (u) 
priced per tonne of output product (y) 

I N N  

costs (q) of energy, 
manpower, overheads, 
etc. all per tonne ~ ~  other valuable 
of output y ~ outputs (p) per tonne 

of output y 

g 
cost (y) of producing one tonne of 
prime product 

y=Zui+Zqi-Zpi 

Calculation of  the cost (y) of  production for an entire plant or for a 
single process in most of  my work z has been omitted 
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costs of incoming strip - 206.9 
priced per tonne of output product y 

operating ~ scrap net benefit = 6.0 
cost 34.4 

cost of non-prime 

output 5.3 

cost (y) of producing one tonne of 
prime strip = 240.6 

yield balance = prime (83.5%) + non-prime (8.4%) + scrap (8.1%) 

Figure 8.13 Sample cost calculation: cold strip mill (strip from strip production) 

Figure 8.14 

costs of incoming slab - 176 
priced per tonne of output product y 

operating 
cost 20 scrap net benefit- 3.15 

g 
cost (y) of producing one tonne of 
prime strip- 192.85 

yield balance = prime (95.5%) + scrap (4.5%) 

Sample cost calculation." hot strip mill (strip from slab production) 

Figure 8.15 

costs of incoming materials, sinter 33.55, ores 10.2, 
fluxes 0.15, coke 26.25, oil 2.5; total 72.65 
priced per tonne of output product y 

operating gas benefit = 4.95 
cost 13.35 

g 
cost (y) of producing one tonne of 
molten iron - 81.05 

Sample cost calculation." iron-making (molten 
production) 

iron from sinter 
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Figure 8.16 How do we choose automation projects and what should be the 
resource allocation for each ? 
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Figure 8.17 Justification histogram 

of the lengths of  strip produced were outside the allowed thickness tolerance and 
allows quantification to be made of the benefits of tighter control. 

Figures 8.18 and 8.19 show what I call an 'economic dynamic programming' 
approach to choosing the best control configuration for a set of closely interlinked 
sequential processes. The idea is that at each stage of the process there are, in the 
example, three control design choices - let us say 'minimum cost', 'medium cost', 
'high cost state of  the art'. This means that, in a six-stage process there are 36 = 729 
possible configurations. 

The assumed aim of the control system in this simple example is to reduce product 
variance and the dynamic programming approach eliminates all non-optimal ways 
of achieving a particular variance so that, by coarse discretisation, we can obtain, 
as shown in Figure 8.19, four possible levels of performance and for each we offer 
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process 1 process 2 process 3 

........ iiii ~ . i ,  
nine possible '...~ 
scenarios 

27 possible 
scenarios 

Figure 8.18 Investment strategy tool for n linked processes 
(I have used this tool with a dynamic programming approach to 
eliminate all definitely suboptimal strategies) 

Figure 8.19 

Process 
every solution offered is a minimum 
cost way of achieving that variance 

i ]  minimum cost scheme ./'~'~ 
with lowest performance 

~ most schemas 
eliminated at intermediate 
stages on non-optimality 
grounds 

.~ highest cost- 

.~ highest performance 

729 possible 
- -  scenarios 

reduced to four 
by 
eliminating 
all non-optimal 
solutions 

Investment strategy tool for six processes with three choices at each 
stage 

the unique minimum cost way of  achieving that performance. (For each of  the three 
possible solutions we have an implementation cost and of  course we need either a 
deterministic or stochastic simulation that can generate estimates of  the intermediate 
performances.) The method allows the designer to allocate the task of  reduction of  
variance optimally between several closely linked sequential process stages. 

In calculating the rate of  return for a possible automation scheme, there will 
usually be a lowest acceptable rate of  return, dotted in Figure 8.20, and all schemes, 
to receive funding must normally generate a return at a slope greater than this. Note 
though that most automation schemes can be broken up into several component parts 
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(Figure 8.20) and that as shown in the figure unprofitable components may be hidden 
by the compiler o f  the diagram. 

Figure 8.21 shows a typical time history for the increase in performance for the 
commissioning of  a typical large and complex automation scheme. The characteristic 
performance fall before rising degrades the return on capital very significantly and 
may make a whole automation project uneconomic. 

Finally, Figure 8.22 shows how, for many processes, there is another technico- 
economic consideration: how to decide on an optimal throughput rate that is a 

estimated rate of return 

uneconomic increment_____~. . . . .  overall 
. . . . . . . . . . .  - ~ project 

/ . 
:: profitable ~ . - - - " "  

/ increment / . - - " ' "  

~ ' '  .-- '" minimum allowable rate 

amount of investment, £ 

Figure 8.20 How an overall project may contain uneconomic increments 
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Figure 8.21 Typical time to obtain project benefits for a major project 
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Figure 8.22 Matching throughput to market conditions 
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compromise between high yield and high throughput. Such problems arise across 
a wide range of applications from pharmaceuticals - where pushing production will 
usually lower yields from the expensive raw materials - to the scheduling of the 
speed for a supertanker carrying oil over several thousand miles - where high steam- 
ing speeds get the oil to market earlier but use a disproportionate amount of extra fuel 
in doing so. For all these cases, a market-dependent operating point, shown by the 
asterisk in Figure 8.22, needs to be chosen as yet another economic aspect of practical 
control. 

Note: Further source material and suggestions for further reading to support the topics 
of Sections 8.1 to 8.3 will be found in Chapter 19. The references cited here are shown 
in support of Section 8.4. 
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investment in automation 

ALLEN, D.: 'Economic evaluation of projects' (Institute of Chemical Engineering, 
London, 1990) 

ANDERSON, J. S. and BRISK, M. L.: 'Estimating the benefits of advanced process 
control'. Proceedings of IChem E symposium on Advances in Process Control, 
York, 1992 

BALDWIN, B.: 'Economic justification of process improvement and automation 
projects'. IEEE Annual Textile, Fiber and Film Industry Technical Conference 
Greenville, S.C., 1997 pp. 1-5 

BRENNAN, D. J.: 'Process industry economics' (Institute of Chemical Engineering, 
London, 1997) 

BRISK, M. L.: 'Process control: theories and profits'. Proceedings oflFAC Congress, 
Sydney, 1993, vol. 7, pp. 241-50 

CRAIG, I. K. and HENNING, R. G. D.: 'Evaluation of advanced industrial control 
projects: a framework for determining economic benefits' Control Engineering 
Practice, 2000, 8(7), pp 769-80 

MARLIN, T. E., BRISK, M. L., BARTON, G. W. and PERKINS, J. D.: 'Experiences 
from an industry-university study on control benefits'. Preprint of conference on 
Control Systems 2000, Quantifying the Benefits of Process Control', May 2000, 
pp. 5-9 



Chapter 9 

Linearisation 

9.1 The motivation for linearisation 

The most powerful tools for analysis and design of  control systems operate only on 
linear models. It is therefore potentially very attractive when undertaking the design 
of  a controller for a non-linear system to replace the non-linear system model by a 
linear approximation. 

Questions that arise next are: 

• What is meant by linearisation? 
• How is it undertaken? 
• To what extent are designs, produced using linear approximations, valid in practice 

when applied to the original non-linear system? 

9.2 What is linearisation? 

9.2.1 An initial trivial example 

The volume V of  a sphere is given by 

V = 47rr3/3 

where r is the radius of  the sphere 

Suppose r0 = 10 then V = 4188.79 

Suppose rl = 10.1 then V = 4315.7147 

Suppose r2 = 11 then V = 5575.27956 

These are the full solutions of  the non-linear equation for three different r values. 
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To linearise the equation we operate as follows. Let V = V0 +6 v, r = r0 +6r .  Then 

V0 + 6V0 = 4rr(r0 + 6r)3/3 

_-- (4/3)zr(r 3 + 3r26r + 3ro6r 2 + 6r 3) 

while from earlier 

Vo = 4zrr3 /3 

Substracting the last equation from the one above yields 

8v = 4rr(3r~6r + 3r06r 2 + 6r 3) 

Linearisation consists in neglecting terms in 6r 2, 6r 3, etc., i.e. 

6V = 4rrrZ6r 

and this result could have been obtained directly by using 

dv 4 2 6V 
dr 37rr° ~- 6r 

To complete this little illustration, we will see how good the approximations are 
for two cases, keeping r0 = 10: 

(i) when rl = 10.1,6r = O.1,6V = 47r(10) 2 0.1 = 125.6637 yielding V1 = 
V0 + 6V = 4314.45 (true solution = 4315.7147) 

(ii) when r2 = l l , 6 r  = 1,6V = 4rr(10) 2 1 = 125.66 yielding V2 = V0 + 6V = 
5445.28 (true solution = 5575.28). 

Clearly, as the perturbation (in this case 6r) moves further from the point about which 
linearisation is performed (in this case r0) the approximation becomes less valid. 

9.2.2 Comments  

Thus linearisation, which we shall discuss in more depth below: 

(a) amounts to a local approximation of  differentiable functions by derivatives; 
(b) is only valid for small perturbations. 

However, and this is a point of  considerable practical importance, we can overcome 
problem (b) to a considerable extent by linearising a function, not about some constant 
value (Figure 9. la)  but rather about a nominal solution that is expected to be followed 
approximately (Figure 9.1 b). 

An interesting side-question now arises. Suppose that the linearised equation 
is itself generating the solution about which successive linearisations are being 
performed (Figure 9.1c). I f  the perturbations are too large, the accuracy of  the lin- 
earisation will be poor, and the generated solution will be invalid and the errors 
will be cumulative, so that the whole approach will fail. This leads to the topic o f  
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(a) 

(b) 

erturbations 

nominal value about 
which linearisation is 
undertaken 

time 

solution nominal solution 

(¢) 

time 

linearisation about the 
current solution 

time 

Figure 9.1 a Linearisation about a constant value 
b Linearisation about a nominal solution 
c Linearisation about the current solution 

numerical solution of  differential equations where, in general, it is not found efficient 
to use linearisation but rather to use several more terms (say four) o f  the Taylor series 
approximation o f  a non-linear function to produce the Runge-Kut ta  approach to the 
numerical solution. 

9.3 Linearisation about a nominal trajectory: illustration 

Let the equation 

~c = f (x) + g(u) 

represent a non-linear industrial process that repeats the same routine day after day. 
Each day it receives a nominal input u N (t) ,  in response to which it produces a nominal 
output XN(t), Figure 9.2a. Linearisation about the nominal trajectories consists in 
producing the perturbation equation 

o f  Og 
~k = ~x X=XN(t) Ox Al- -~ U=UN(t) ~u 
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(a) 
(b) 

~..... u(t) 

~ x(t) 
XN(t) 

~ (t) 

t 

Figure 9.2 a The nominal input UN(t) provokes the nominal response xN(t) 
b Perturbation about the nominal trajectories 

/ 

f(x) + hdf[x 
f ~  / f ( x )  

/ 
/ 
/ 
/ 
/ 
/ 

r ~ 

x plane 

Figure 9.3 The derivative approximates the function f locally by the tangent plane 
showtl 

This linear equation models the process behaviour about the nominal trajectories 
(Figure 9.2b). 

In practice, the nominal trajectories will often be taken as the mean of a large 
number of  typical performances. Any individual performance can then be modelled 
a s  X ( t )  = X U ( t )  -~- the solution o f the perturbation equation. 

9.4 The derivative as best linear approximation 

We can, if we wish, define the derivative of a function f (x )  as the unique linear 
function d fix that best approximates f near to x (Figure 9.3). 

In the usual system of coordinates, the linear transformation dfhas the matrix 

F = 
(Ofl/OXl) . . . . .  (Ofl/OXn)- 

[_(Ofn/Oxl) . . . . .  (Ofn/OXn) 

which is called the Jacobian matrix of  f at x. 
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The goodness of the approximation depends on d f i x .  I f  d f i x  is non-zero then in 
general the approximation is good. 

9A The inverse function theorem 

The inverse function theorem gives an interesting view o f  approximation. It says that, i f  
the derivative d f  o f f  at x has an inverse then so locally does f" i.e. in some region U in 
x there exists a function g such that 

g ( f  (x)) = x f o r  all x in U 

f ( g ( y ) )  = y for  all y in V 

i.e. f has an mverse g on the restricted regions U, V. 
Within the regions U, V we can replace the x coordinates by the corresponding y 

coordinates (see Poston and Stewart, 1976, p. 9) and then over the region U the function 
f is completely linearised without approximation. However, i f  d f  is not invertible (tested 
by checking for  singularity o f  the Jacobian matrix) then such an approximation is not 
possible. Overall, the following result holds. I f  f has a non-zero gradient at x then we can 
find a smooth change o f  coordinates in some ball U around x by which the expression 
o f f  on u becomes linear. 

Where the gradient is zero, the Jacobian is, by definition, zero and approximation 
has to be carried out by relying on the matrix o f  second derivatives, i.e. on the Hessian 
matrix 1-1. 

As can be seen in Figure 9.4. the nonlinear function sin x can be well approximated 
at x = 0 (by the linearisation y = 2x) but at x = re~8, the linear approximation y = 1 
is poor because the Jacobian is zero there. 

_•=2x y= 1 

j ~Xy'__sin~x' 

Figure 9. 4 The curve y = sin 2x is wel l  approximated by its f i r s t  derivative 
y = 2x  at  x = O. A t  x = zr/8 we have as linear approximation 
y = sin rr/4 + 0 = 1, a poor  approximation 
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9B The concept of transversality 

When a line pierces a plane a slight variation in either the line or the plane will not affect 
the nature o f  the intersection. However, if a line touches a plane tangentially then slight 
variations will affect the nature o f  the meeting, resulting in, for example, two-piercing 
of  the plane, or no meeting with the plane at all (see Figure 9.5). These ideas, which are 
closely connected with catastophe theory, have obvious connections with robustness as 
defined in terms of  insensitivity to parameter changes. 

(a) (b) (c) k /  

/ /  
Figure 9. 5 (a) As a typical situation in three dimensional space - a loop 

touches a place tangentially. (b, c) Typical situations in three 
dimensional space - a line (b) pierces the plane in two places, 
(c) fails to meet the plane 



Chapter 10 

Multivariable linear processes 

10.1 Transfer function representations 

By a multivariable process we mean a process with several (say r) inputs and several 
(say m) outputs (Figure 10.1). In general, every input is connected to every output 
through some dynamic coupling. We can pretend that the ith output Yi is connected 
to the j th  input ui through a transfer function gij (S). Because of our assumption of 
linearity, superposition is valid and therefore we can write 

r 

Yi (s) = Z gij (s)ui (s) (10.1) 
j = l  

o r  

• = ( g i j  ( S ) )  " 

\ym(s)/ \Ur(S)l 

where the notation (gij (S)) indicates the matrix 

/ 
gmi(S) . . .  gmr(S)] 

Multivariable matrix formulations are used for control system design, particularly 
using the inverse Nyquist array methods pioneered by Rosenbrock (1971, 1974) and 

Ule I Yl 
- - -  Y2 

Ur* [ I ~ Ym 

Figure 10.1 A multivariate process: a system with r inputs and m outputs 
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Macfarlane (1970). The methods make central use of  the concept of diagonal dom- 
inance. A completely diagonal matrix of transfer functions (with zeros everywhere 
except on the leading diagonal) would clearly indicate just a set of non-interconnected 
single-input single-output systems - each such system could be dealt with separately 
and there would be no need for any special 'multivariable' treatment. 

In practice, multivariable closed loop systems can rarely be diagonalised for all 
frequencies by choice of  controller. However, they can be made diagonally dominant; 
that is, the diagonal terms can be made large compared with the off-diagonal terms. 
It is a key result of Rosenbrock that interaction between a set of individually stable 
diagonal elements will not cause overall instability, provided that the overall matrix is 
diagonally dominant. (This result rests on Gershgorin's theorem from linear algebra. 
The theorem allows bounds to be set on the location of eigenvalues.) 

10.2 State space representations 

In the state space modelling of linear systems it is assumed that there exists an nth order 
vector called the state vector, whose value at every instant of time completely charac- 
terises the dynamic state of  the system. The order n is, in general, equal to the sum of 
the orders of  all the individual differential equations that together describe the system. 

Every single-input single-output linear system can of course be described in state 
space form and we choose such a system to illustrate some simple state space ideas. 
Let the single-input single-output process be 

2d2y 3dy d3y + + + 4y = u (10.2) 
dt --5 ~ --d-i- 

To move to a state space model we let 

Xl = y  

x 2 = x l  

x3 = x 2  

Then, equivalent to eqn. 10.2, we can write 

Xl =X2 
X2=X3 

X3 = --4Xl -- 3x2 -- 2x3 -+- u 

This is the state space form. It would more usually be written 

lo o)(xl)(!1 X2 = X2 -1- U 
~73 --3 X3 

y = ( 1  0 0) x2 
x3 



Multivariable linear processes  139 

which is usually written 

~c = A x  + Bu  | 

y = C x  I 
and this formulation is the same for all multivariable linear systems. 

(10.3) 

10.3 Design of feedback control systems 

A is called the system matrix and it is the main governor of  systems behaviour. By 
setting 

u = D ( x  + v) 

we obtain 

(10.4) 

2 = A x  + B D x  + D v  = (A + B D ) x  + D v  (10.5) 

The new system matrix can be seen to be A + B D  rather than A, as it was before 
feedback control was incorporated. It is easy to show that, for most systems, the 
matrix A + B D can be chosen to give any performance that we desire by choice of  
D above (assuming A, B fixed). This idea is the basis for much of  state variable 
feedback design. 

10.4 Time solution of the state space equation 

Let us set u : 0 in eqn. 10.3 and agree to concentrate on solving the resulting equation 

~c = A x  (10.6) 

with x(0) = x0 given (since y = Xl, we do not need to consider y separately). 
Although x is an n vector and A an n x n matrix we can, remarkably, solve the 

equation just as though it were a scalar equation and write 

x ( t )  = exp(At) x(0) (10.7) 

Provided that we define what we mean by exp(At), we can reasonably expect that 

A2t 2 
e x p ( a t ) = l + A t +  ~. + . . .  (10.8) 

i.e. a series expansion with I being the nth order identity matrix. 
Also if we Laplace transform eqn. 10.6 we obtain 

sx ( s )  - x(O) = a x ( s )  (10.9) 
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from which 

x ( t )  = £ - 1 { ( s i  - a ) - l l x ( 0 )  (10.10) 

where ~ - 1  indicates the operation of  inverse Laplace transformation. 
Under the (widely applicable) assumption that the solution of  eqn. 10.6 must be 

unique, it becomes clear that 

exp(At) = ~ - l { ( s l  - A) - l  } (10.11) 

Equation 10.11 is useful in the solution of  the state variable equation 

~c = A x  + B u  (10.12) 

by Laplace transform methods. 

Solu t ion  o f  the equat ion  5; = A x  + B u  in the t ime domain.  

I f  eqn. 10.12 is well posed, then it possesses a unique solution. This solution is 

x ( t )  = exp A ( t  - to)x( to)  + exp A ( t  - to - r )  B u ( r ) d r  (10.13) 

Proof'. Differentiate eqn. 10.13 to yield 

J ( t )  = A exp A(t - to)x( to)  

L + A exp A ( t  - to - r ) B u ( r )  d r  (10.14) 

+ exp A ( t  - to - (t - t o ) ) B u ( t )  

Substitute eqn. 10.13 into 10.14 to yield 

2 ( t )  = A x ( t )  + B u ( t )  

as required. 
A final interesting point about the solution 

x ( t )  = e x p ( A t ) x ( O )  

Because of  the nature of  the state vector (that at any time it completely characterises 
the dynamic state of  the system) and because of  the nature of  the operator exp(At) it 
forms a transformation semi-group whose members,  say T, have the property that 

T ( q  + t2) = T ( q )  + T(t2) (10.15) 

where tl, t2 are two different time intervals. 
What all this means is that 

x ( t l )  = e x p ( A q ) x ( O )  

x(t2) = exp (A t2 )x (O)  = exp(A(t2 - t l ) ) X ( t l )  
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I f  we choose times separated by a constant interval T then we can write 

x(T)  = exp(AT) x(0) 

x(2T)  = e x p ( a T )  x(T)  

and in general 

x(kT)  = exp(AT)x ( (k  - 1)T) (10.16) 

Thus, once we have calculated the matrix exp(AT) (for some chosen small time 
interval T) we can generate the whole time solution to eqn. 10.12 by repetitive multi- 
plication by the constant matrix exp(A T). See Moler (1978) for a review of  alternative 
ways of  calculating the transition matrix. 

IOA It seems remarkable that an oscillatory solution can be 
generated by repeated multiplication by a constant 
matrix (see Figure 10.2) 

~/initial condition 

Figure 10.2 The points marked on the transient solution form a time series 
that can be generated by repeatedly multiplying the initial 
condition vector by a constant transition matrix 

10.5 Discrete and cont inuous  t ime models:  a unified approach  

The continuous time model 

2 : Ax + Bu (10.17) 

has the unique continuous time solution 

x(t2) = ~(t2 - q)X(tl) + qJ(t2 - t l ) u ( q )  (10.18) 

provided that u(t) is constant on the interval (tl, t2). (It is also assumed that certain 
very general conditions for the well-posedness of  differential equations are satisfied.) 
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Although eqn. 10.18 is valid for any choice of tl, t2, i.e. it is as we have said 
a continuous time solution, it is of  course possible to determine the solution only at 
intervals of time T seconds apart, i.e. 

x ( k T )  = ~ ( T ) x ( ( k  - 1)T) -I- q J ( T ) u ( ( k  - 1)T) (10.19) 

or if the interval T is assumed rather than being explicitly written 

x ( k )  = ~ ( T ) x ( k -  1) + O2(T)u(k  - 1) (lO.2O) 

This model can be considered to represent: 

(i) The exact behaviour of  eqn. 10.17, provided that u is constant on every inter- 
val of  length T. This will occur if  u is generated by a computer updating at 
intervals T. Notice that the real solution exists at all times, whereas eqn. 10.17 
produces information only every T seconds. 

(ii) The approximate behaviour of  eqn. 10.17 under conditions where u does not 
satisfy the constancy condition. 

(iii) A difference equation that is an exact model for some inherently discrete time 
process. Such a difference equation may be set up and identified numerically 
for a discrete time system without any recourse to continuous time models. 

We are pointing out, amongst other things, that the numerical solution of a differential 
equation is inevitably a difference equation. This difference equation may be viewed 
in the three different ways cited above. 

The Z transform (see Chapter 11) may usefully be applied to multivariable discrete 
time models to yield alternative derivations of  the expressions derived above. 

10B Generat ion o f  a control  sequence 

Suppose that we wish to generate a control sequence to drive the state x in eqn. 10.20 

from a given state x(O) to a given desired state Xd f o r  some particular value o f  k. 
In eqn. 10.20, let us agree to set 

a = dP(T), B = ~ ( T )  

Then we can write 

x(1) = Ax(O) + Bu(O) 

x(2) = Ax(1) + Bu(1) 

= A(Ax(O) + Bu(O)) + Bu(1) 

and in general 

Iu (k _ 
x (k )  = Akx(O) + [B, AB ,  A2B  . . . . .  A k - I  B] L u('0)l)J 1 
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and, provided that invertibility obtains, 

I 
u(k- 1)] 

: = [B, AB . . . . .  Ak - lB] - l ( x ( k )  - Akx(O)] 

h uiO) 
I f  x(k) is replaced by the desired state Xd then an algorithm for generating a control 
sequence results: 

: = [B . . . . .  A k - | B l - l ( x d  - Akx(O)) 

u(o) 
(10.21) 

10.6 The concept of controllability for multivariable systems 

Assume that the output y of  a linear single-input single-output system can be driven 
to some arbitrary point y by choice of  input u over some time period. Then, by the 
definition of  linearity, the output y can be driven to every point in R 1 by suitable 
choice of  u over some time period. 

For an n dimensional multivariable system, the state x may not necessarily be 
able to be forced to every point in ~n,  no matter what control input is applied. 
A system where x cannot be forced to every point in its own state space is called an 
uncontrollable system. 

IOC Conservation of dimension under linear transformations 

Let L : P ~ Q be a linear transformation from 

p = Rn to Q = • n 

Dora L is defined as the subspace of  P on which the transformation operates. 
Range L is defined as the subspace of  Q satisfying 

Range L = [Lxlx ~ dom L] 

Ker L is defined as the subspace o f  P satisfying 

Ker L = {xlLx = O} 

Then the conservation of  dimension insists that 

dim(Range L) + dim(ker L) = dim(dom L) 



144 Control theory 

This means that the dimensionality o f  the range o f  the transformation L may be less 
than the dimensionality o f  the domain. Such a situation will occur whenever dim 
(Ker L) > O. 

This 'loss o f  dimension into the kernel' is exactly the mechanism by which a system 
becomes uncontrollable. Tests for controllability amount to tests for  ensuring that dim 
(ker L) = O, where the transformation L is constructed so as to represent the operation 
o f  mapping x(O) into x(t). In this we have 

L(x(O),u(r), I) : x(O) --+ x(t) 

i.e, the mapping depends on x (0) and on the particular function u defined on the interval 
1 = [to, t]. The actual tests for controllability have been derived from linear algebra. 
See Chen (1984)for detailed descriptions o f  the techniques. 

In a system that is not controllable, there are some states that cannot be reached 
infinite time by any control strategy. 1n fact some subsets o f  the state ((iii) and (iv) in 
Figure 10.3), cannot be influenced by the input. 

l* 
+ 

Figure 10.3 Every linear system can be decomposed into f our  blocks: 

(i) Control lable  and observable  
(ii) Control lable  but not  observable  

(iii) Observable  but not  control lable  
(iv) Nei ther  control lable  not  observable  

Observability is a dual o f  controllability. It is concerned with the question: does 
measurement o f  the output y of  a system allow complete knowledge o f  the state vector 
to be determined? 

An interesting view, due to Kalman, sees every system as representable by four 
blocks. The idea is illustrated in Figure 10.3. 

Note: Source material and suggestions for further reading to support the topics of this chapter will be 
found in Chapter 19. 



Chapter 11 

Discrete time and computer control 

11.1 Computers as system components - devices that can 
change their state only at discrete times 

A system that can change its state only at discrete points in time is called a discrete time 
system. Amongst  the many examples of  discrete time systems in everyday life could 
be mentioned the rates of  exchange for foreign currencies charged by retail banks. Typ- 
ically, these rates may be updated once every working day and stay constant otherwise. 

Computers are the discrete time systems that interest us here; in particular, com- 
puters that perform the same calculation repeatedly. Such computers are used as 
controllers within closed loop systems. It turns out, perhaps surprisingly, that the 
discrete time effects of  a computer, when used as a controller, are sufficiently pro- 
found to require a whole new batch of  design techniques - these are introduced in 
this chapter. 

To get a feel for what is going on, let us look at a very simple control loop first 
not containing a computer (case A) and secondly, containing a computer (case B). 

The control loop (case A) simply comprises an integrator with negative feedback 
(Figure 11.1). Everything is at rest and set at zero and then v is moved instantaneously 
from v = 0 to v = 1. Simple calculation will show that the system output y moves 
as shown (Figure 11.2). 

In case B a computer ' looks at'  the signal e every 1.5 s, multiplies this signal by 
unity and puts this out to the integrator where it remains constant for 1.5 s. 

Essentially, cases A, B differ only in the interposition of  a discrete time device 
in case B (Figure 11.3). To work out the response, we note that over the first 1.5 s 

Figure 11.1 A continuous typical feedback loop with an integrator in the forward 
path (Case A) 
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1 . . . . . . . . . . . . .  
! 

I 

O0 1 2 3 4 
time (seconds) 

Figure 11.2 The step response of  the system o f  Figure 11.1 

the computer multiplies the signal by unity, i.e. only 
its discrete time effect is being considered 

k output remains constant 
over 1.5 second intervals 

v +C-~..Jcomputer s a m p l i n g [ ~ ~  
- - ~ -  " leveryl.5seconds J :  ~ [ - g ~  ~ - 

Figure 11.3 The system o f  Figure 11.1 with the addition o f  a computer that 
multiplies by unity and has a sampling interval o f  l.5 s 

period the input to the integrator is fixed at v = 1. Thus 

f01"5 f015 y(t)  I/=1.5 = e(t) dt : dt = 1.5 

e(t)]l=l.5 = v ( t ) l z : l . 5  - y ( t ) l z _ - l . 5  = 1 - 1 .5  = - 0 . 5  

and 

f3 y(t),l=3l = - 0 . 5 d t  + 1.5 = 0.75 
.5 

and the response y(t) is as shown in Figure 11.4. The significant differences between 
the responses 11.2, 11.4 are due entirely to the effects of sampling. 

I1A A simple and informative laboratory experiment 

It forms an interesting laboratory demonstration to reproduce the results of Figures 11.1 
to 11.4 experimentally and then to vary the sampling interval of the computer, which 
is only a sample and hold device in reality, and observe the results. As the sampling 
interval is increased, instability will eventually occur. The demonstration can then be 
enhanced by connecting in a frequency response analyser to determine approximately 
the phase shift characteristics of the computer as a function of applied frequency. A 
Bodeplot check on stability will, very satisfyingly, be found to agree with experimental 
findings. 
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i i I I L 

0 1 2 3 4 5 
number of samples 

The step response of  the system of  Figure 11.3 

A/D D/A measuring 
converter converter actuator device ' gta contin oust  

computer process 

A continuous process under digital control 

11.2 Discrete time algorithms 

In this chapter, we are concerned with the discrete time control of  continuous time 
processes (Figure 11.5). A discrete-time algorithm is an algorithm that operates on a 
sequence of error signals to produce a sequence of command signals. The importance 
of discrete-time algorithms lies in the fact that they are directly realisable in a digital 
computer controller. Such a digital controller samples the error at regular intervals of 
T seconds and produces a sequence of output commands, spaced at the same interval. 

A continuous signal e(t), when sampled every T seconds, is denoted e* and 
the command sequence produced by a discrete-time controller is denoted u*. The 
discrete-time command signal u* must be converted into an analogue signal before 
being applied to a continuous process. Exact reconstruction of a continuous signal 
from samples is impossible to perform in real time since the reconstruction algorithm 
necessarily calls for unavailable future samples of the measured variable. Approxi- 
mately correct reconstruction is possible but the necessary algorithms are relatively 
complex and they have undesirable frequency response characteristics. Usual practice 
for conversion of the command sequence u* into a continuous signal is a very crude 
piece-wise constant approximation. The device that performs such reconstruction is 
a digital to analogue converter whose input is updated every T seconds. Seen as a 
mathematical component, rather than as a physical device, the operation of piece-wise 
constant reconstruction is equivalent to that of a zero order hold device. 
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11.3 Approaches to algorithm design 

Roughly, there are two approaches to algorithm design. 

Direct controller synthesis. Procedure in outline: 

(i) Convert the specification that the final system must meet into a desired trans- 
fer function H(z). This step will very often involve a considerable amount of  
approximation - particularly in those frequently encountered cases where the 
original specification is expressed in terms far removed from those pertaining 
to transfer functions. 

However, if  the specification can be expressed in terms of a desired natural 
frequency and a desired damping factor then Figure 11.6 may be used directly 
to choose the poles of H(z). 

To use Figure 11.6 decide upon the required natural frequency o)n, damping 
factor s e, sampling interval T, and use the diagram to locate the intersection in 
the complex plane of the con and the s e loci. Suppose this intersection is at a +jb, 
then the poles of  the sought-for transfer function H(z) have to be located at 
a +jb. That is, the denominator of  H(z) should be (z - a +jb)  (z - a - j b ) .  

Choice of the numerator of  H(z): In choosing the numerator of  H(z) the 
following factors need to be considered: 

(a) Steady state response 
(b) Frequency response 
(c) Physical reachability and computational time requirements for the con- 

troller D(z). 

Considering (a), recall that the steady response to a unit step, for stable H, is 
H(z) as z --~ 1. Considering (b), one point of  view is that the response of H(z) 

imaginary 
axis z plane 

-1.0 -0.8-0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1.0 
real axis 

Figure 11.6 Diagram to assist in choosing the poles of  H (z) 
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~+ ~ 

Figure 11.7 The combination o f  controller D(z)  and process + zero order hold 
Gt (z), in closed loop 

when oJ = ms~2 should be zero. Such behaviour can be obtained by placing one 
or more zeros at z = 1. Considering (c), notice that if the order o f  numerator 
and denominator of  D(z)  are equal then 'instantaneous' calculation of  control 
outputs is implied. Choosing the order of  numerator in H to be one less than the 
order of  the denominator allows one sampling period T for the control algorithm 
to be calculated. 

(ii) Produce a transfer frunction G (s) representing the process that is to be controlled. 
(iii) Form the transfer function G'(s)  = Go(s)G(s) ,  where Go is a model of  the 

interface between controller and process. 
(iv) Discretise the transfer function G'(s)  to produce the discrete time equiva- 

lent G t (z). 
(v) Use the relation D(z)  = H(z) /{Gt(z )[1  - H(z)]} to synthesise the necessary 

controller for insertion into the loop (see Figure 11.7). 
(vi) Convert D(z)  into a difference equation and use it as a real time algorithm. 

l l B  A clever manipulation - how the digital to analogue convertor 
(zero order hold) is transferred for calculation purposes 
to become part of  the process to be controlled 

(i) Notice carefully that in the approach described above, the digital to analogue 
convertor at the output of  the controlling computer is grafted on to the process to 
form the artificial process G r, made up as G~ (s) = Go(s)G(s). 

The design procedure is thus to control G t rather than G. Thus, insofar as 
there are distortions caused in the analogue signal reconstruction at the digital to 
analogue convertor, they, being embodied in G t, will automatically be compensated 
during control algorithm design. 

(iO Notice also that 

Z{Go(s)G(s)} ¢ Z{Go(s)}Z{G(s)} 

In fact, 

ZIGo(s)'  = Z ( 1 - e x p ( - s T )  

_ (1 - z - l ) z  _ 1 
(z - l) 
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i.e. a zero order hoM unconnected to another analogue device is invisible to the Z 
transform. 
Comment: It can be seen that the equation for D(z) contains models both of the 

process and the desired behaviour. In effect, the controller cancels out the existing 
process characteristics and replaces them by those of the required system. 

Gain plus compensation approach. Idea in outline: 

(i) If a controller consisting of only a simple gain of numerical value C is used as 
in Figure 11.8 then the performance of the resulting system (of transfer function 
CG(z)/[1 + CG(z)]) may be manipulated by choice of the value for C. 

(ii) As C is increased, the speed ofresponse ofthe system increases but in general the 
response becomes oscillatory, and as C is increased further, the system becomes 
unstable. 

(iii) By incorporating a suitable compensator M into the loop (Figure 11.9) improved 
stability characteristics can be given to the loop and then the value of C can be 
further increased with a consequent increase in speed of response. This process 
of juggling the design of compensator M and the value of gain C can be iterated 
until a best possible response is achieved. 

The compensator M primarily needs to improve the stability margin of the 
loop hence allowing higher gain C to be used, resulting in faster response. M 
may be an approximate differentiator, as in the three term controller (the three 
parallel terms are again C, a differentiator D and an integrator I that is present 
to remove steady state error). 

Three term controllers are favoured by practitioners on grounds of: one 
form of controller satisfies all applications; the controller is easily 'tuned' for 
application using Ziegler-Nichols rules (see Section 8.2. l); the controller is a 
successful work-horse being applied in huge numbers across the industry. 

Seen from a frequency response point of view, the compensator M is a 
phase-advance network and frequency response techniques, usually used in the 
s domain, allow the design to be matched to the application. 

Figure 11.8 

Figure 11.9 

A controller consisting of  a simple gain C in a discrete time loop 

Incorporation of  a compensator into the loop of  Figure 11.8 
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(iv) Discretise the MC combination to be directly implementable in a digital 
computer. 

IlC Takahashi's algorithm 

In representing a typical process by discrete data points (assuming that a constant 
value o f  sampling interval T is to be used), in order to capture the all important initial 
curvature, a rather short value o fT  is indicated. However, in order to capture the (also 
importanO final value, a large value o f t  is indicated- so that the number of points to 
be logged will not be excessive. 

Takahashi solves this problem nicely by taking frequent samples initially in the step 
response and then using a formula to generate further points until the correct steady 
state is reached (Figure 11.I0). Notice that these generated further points will not, in 
general, lie exactly on the curve. 

(a) 

time 

(b) 

~ .... time 

(c} pmcess open _ ~ ~ ~ ~  
l loop response)..~approximation 

//5"'~ x g-enerated by 
j model 

time 

Figure 11,10 How many points are needed to capture a step response? 

a Two few points fail to capture the essential shape 
b Too many points to handle (beating in mind that the order 

of  the on-line algorithm will be the same as the number of  
points) 

c Takahashi's approach. Early points capture the essen- 
tial shape. Approximation (shown dotted) completes the 
response 
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Takahashi's algorithm then uses the model coefficients to synthesis a controller 
for the process (the one that generated the open loop step response) as follows 
(Figure 11.11): The model o f form 

n-1 gnZ_ n 
6 z) = -1  + i=1 1 - pz  -1  

is fitted to the first n data points and the parameter p is fixed to give the correct steady 
state value and approximately correct decay rate. Takahashi then derived formulae 
(Takahashi et al. 1970) by which the n + 1 coefficients in the controller (Figure 11.11) 
may be calculated directly from the n + 1 model coefficients (gl . . . . .  gn, P). 

integral 
Y T ) ~  

Figure 11.I1 Takahashi's algorithm 

11.4 Overview: concluding comments, guidelines for algorithm 
choice and some comments on procedure 

(i) Very broadly, there are two approaches to algorithm design. The first, synthesis 
of D (z) to achieve a specific closed loop transfer function H (z), is theoretically 
sound but suffers from two defects: choosing H(z)  usually involves massive 
approximation; D(z)  'contains' both G(z) and H(z)  and is therefore often 
unwieldy. The second approach, using a gain plus compensator, is not very 
scientific but it has the great merit of simplicity. 

(ii) Every continuous time algorithm can be discretised - this is one source of algo- 
rithms. Note, however, that the performance ofa discretised algorithm is always 
degraded to some extent compared with that of the original continuous time 
algorithm. The extent of degradation is governed by the choice of sampling 
interval. 

These are, however, discrete time algorithms that have no (apparent) contin- 
uous time equivalents. These are the most interesting algorithms and they tend to 
be incorporated as part of advanced control packages for solution of demanding 
problems. 

(iii) Some industries, like aerospace, tend predominantly to use frequency response 
continuous time design methods and only later to discretise. Process industries 
tend to use off-the-shelf three term algorithms integrated within diagnostic and 
monitoring supervisory software. 
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(iv) In general, it is recommended to use simple solutions (for instance, off-the- 
shelf three term controllers) for routine problems. However, it is important to 
match the level o f  sophistication of  the controller to the inherent difficulty of  
the problem. 

(v) Many alternative methods have been put forward for the selection of  sam- 
pling interval T. The one suggested here, based on closed loop bandwidth, 
is a reasonable compromise between ad hoc methods and theoretical overkill. 

l lD Some difficulties in moving from differential equations to 
approximating difference equations 

Suppose that we have a differential equation 

ym + 3y" + 2y t + y ----- 0 (11.1) 

y(O) = lO, y(O) = 2, Jr(O) = 5 

i Suppose also that we have discretised the differential equation, by any suitable method, 
into the form 

y(k) = ay(k - 1) + by(k - 2) + cy(k - 3) 

f o r  some chosen time interval T and with numerical values being found for a, b, c. 
Suppose finally that we wish to use the difference equation to generate an approx- 

imate numerical solution for the differential equation that it approximates. The 
differential equation: has three initial conditions and the difference equation needs 
three starting values. However, it is not clear how to proceed or at least how to get 
started. 

I1E Discretisation 

By discretisation, we mean the move from continuous to discrete time; differential 
equation to difference equation; s domain to z domain. 

The most obvious approach to discretisation might appear to be replacement o f  s 
by its equivalent function in z. However, z = exp(st); hence the required substitution 
would be s = (ln z ) / T  Substitution would then produce an ugly polynomial in In z. 

Discretisation methods that are actually used are: 
(i) Replacing derivatives dy/dt by their finite difference approximations 

Yk+l -- Yk Yk -- Yk-I  
T T ' 

Yk+ l + Yk 
- 7 -  

T 

(ii) Mapping the poles o f  a continuous transfer function G ( s ) to the correct equivalent 
points in the z plane as dictated by the definition o f  z. 
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(ii 0 Using the relation 

G(z) = Z{d~ -1 (G(s)} 

(iv) converting G(s) into muttivariable {A, B, C} form and using ~(T) ,  ~P(T) as 
discrete operators (see Chapter lO for  more background). 

(v) Using any numerical algorithm for  the time solution o f  differential equations, for 
example, Runge-Kutta methods. 

Discretisation needs care since it is easily possible for  a stable G (s) to be transformed 
into a G(z) o f  quite different, even unstable, character 

l lF A simple matter of quadratic behaviour 

We investigate the problem: Given that G(z) has the form 

z - - a  

(Z -- b)(z - 1) 

determine from first principles in the z plane the maximum value o f  C that does not 
produce instability in the loop (Figure 11.12). 

Figure 11.12 The closed loop system whose poles  we study in this section 

Approach: The loop has the z tra~form 

C(G(z)) C(z - a) 

I + C G ( z ) I + C G ( z )  (z b ) ( z - 1 ) + C ( z - a )  

We seek the largest value o f  C for  which the roots o f  1 + CG(z) = 0 satisfy ]zl < 1. 
Now,from an examination o f  the equation, we can see that as C --> oo the two solutions 
will have asymptotes z --~ o~,z --> a. 

It could seem to the uninitiated that the value o f  C we are seeking might be the value 
o f  C that brings one root of  the equation to z = - 1 ? 

Question: When will the simple stability test 

1 4- CG(z)Iz=_ 1 = 0 (11.2) 

yield the required value o f  C? 
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T e s t  c a s e s  (Figure 11.13) 

z + 0 . 2  
( l )  G(z) = 

( z  - 0 . 3 ) ( z  - -  1)  

z + 0 . 2  
( 2 )  G(z) = 

( z  - 0 . 4 ) ( z  - 1)  

(a)  i ~ . . . . . . .  ~ ~ ~ root  locus  

..-" .~ . . .~_  " . .  f o r c a s e  1 

C = 3 . 2 5 ~  ~ C = 0 . 1 5  I 

I J 
I 

/ 

\ t 
\ / 

\ / 
\ / /  

\ 
\ / 

/ . 
\ \ , ,  / /  u n i t  

x 
" circle  

(b) 
, , ~  ~ .. -. root  locus  

.4 . . . .   :o'o i 

I I 

\ I 
\ I 
\ I 
\ # 
x / 

# 

/ unit 

.. -- circle  

Figure11.13 Root loci (upper halves only shown) for the system of  
Figure 11.12 

a W i t h  G(z) = (a + 0 2 ) / ( (  - 0 . 3 ) ( (  - I )  

b W i t h  G(z) = (z + 0 . 2 ) ( (  - 0 . 4 ) ( (  - 1 )  

The point to note from these diagrams is that in (a) the root locus leaves the 
unit circle at z = - 1 whereas in (b), the locus enters the circle at that po in t -  
numerical checks on stability can be misleading unless the locus is drawn 
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Applying the simple test (eqn. 11.2) to the two cases leads respectively to the solutions." 

(i)  z 2 - 1.3z + 0.3 + Cz + 0.2C[z=l = 0 ~ c = 3.25 

(ii) z2 - 1 . 4 z  + O.4 + Cz + O.2clz=l = 0 ~ c = 3 . 5  

Case 1 with C = 3.25 leads to roots at z = -0 .95 ,  z = - 1  

Case 2 with C = 3.5 leads to roots at z = - 1 , z  = - t . 1 ,  

i.e. for case 1 Cm = 3.25 is confirmed as correct but for case 2, we find that Cm < 3,5~ 

To investigate, we plot the loci of  the roots of  eqn. 11.11 as C varies. It is now clear 
that the difficulty in case 2 arises because the loci leave the unit circle at points where 
z has complex values. Calculation shows that this behaviour occurs whenever 

( 1 - , )  
a ~<.  5 - ~  (11.3) 

and that the value Cm of  C at which the loci leave the unit circle is then 

cm ; 1, - b (11.4) 
laf 

Using this equation we obtain the correct value of  Cm for ease 2 as Cm = 3.0. Of 
course, when the inequality 11.3 is not satisfied, Cm can be determined using eqn. 11.4. 

Using only a knoWledge o f  elementary quadratic equations, we have obtained an 
interesting insight into the behaviour of  a closed loop discrete time system. 

I1G Continuous is not the limit of  discrete as T --* 0 

Consider the transfer function 

1 
G(s) = 

s + O . l  

The equivalent discrete time transform, obtained by taking the Z transform ~ - 1 { G ( s ) } is 

z 
G(z) = 

z - e x p ( - O . l  T) 

l f  we set T at some reasonable value, say T = 1, the behaviour of  the inverse transform 
o f  G(z) in the time domain approximates reasonably well the behaviour of  the inverse 
transform of  G(s ). 

We might assume that as T --~ O, the approximation will improve until in the limit, 
the two behaviours coincide. However, note that 

z 
G(Z) T~O = 

Z--1 

whose s domain equivalent is 1/s. an integrator. (Attempts to investigate this effect by 
numerical methods tend to run into problems of  word length.) 
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l l H  Non-uniqueness of inverseZ transforms 

From the point of  view of  the Z transform, the three signals shown in Figure 11.14 are 
identical. This leads to many practical problems, since, i f  the signals are input to a 
~ystem, the effect of  the three signals will be markedly different. Similarly, a signal that 
is apparently constant, according to the transform, may actually be oscillating widely 
between sampling instants. 

time ----* 

time 

Figure 11.14 

"3 
¢ffJ 

I 1 
time 

The three signals shown have identical Z transforms 

I l i  Stability is normally considered to be a property of a system so 
that for any bounded input a stable system should produce 
a bounded output 

Stability is normally considered to be an inherent property o f  a system so that, for any 
bounded input, a stable system should produce a bounded output. 

However, note the following. A system of  transfer function 

1 
G(z) -- 

z 2 +  1 
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in response to a step u(k ) = { 1, 1, 1 . . . .  } produces the bounded output 

y(k)  = {0,0, 1, 1 ,0,0,  1, 1 ,0 ,0  . . . .  } 

but in response to the input 

u(k) = { 1 , 0 , - 1 , 0 ,  1 , 0 , - 1  . . . .  } 

it produces the unbounded output 

y (k) = {0, O, 1, O, - 2 ,  O, 3, O, - 4 ,  O, 5, O, - 6 ,  0 , . . . }  

(Further investigation will show that the input for  the second case has u ( z ) = 1 / ( z 2 + 1) 
so that G(z)u(z)  has replaeed poles on the unit circle.) 

Note: Source material and suggestions for further reading to support the topics of this chapter will be 
found in Chapter 19. See in particular Section 19.6. 



Chapter 12 

State estimation: the Kalman filter 
and prediction 

12.1 State  e s t i m a t i o n  - w h a t  it a t t e m p t s  to  do  

Many powerful feedback control strategies require the use of  state feedback 
(Figure 12.1). However, in many important practical cases the state is not avail- 
able to be fed back (it is said to be inaccessible). In such cases, a state estimator may 
be used to reconstruct the state from a measured output (Figure 12.2). 

Figure 12.1 

V 

Figure 12.2 

v + / - ~  u y 
• process 

~ state 
X 

state feedback 
controller 

Application of  state feedback 

I u 
state feedback 
controller 

p r o c e s s  • 

d 
state 
estimator 

Application of  state feedback when the state is inaccessible." a state 
estimator reconstructs an estimate Sc of  the true state x 



160 Control theory 

U y 

~ X in  

o) 

Figure 12.3 Simple illustration of the principle of the Kalman filter 

12.2 H o w  a s ta te  e s t i m a t o r  w o r k s  - the  K a l m a n  f i l ter  

We assume that at time t = 0, the state x is exactly known, with value x0. We have 
a process model that, given x0, can make a model-based prediction T seconds into 
the future, to yield the prediction Xp (T). 

We also have a measurement y and a known relation Xm = oty, applying at all 
times. In particular we have Xm (T) = oty(T). 

Both the model used for prediction and the measurement y are assumed to be 
subject to errors. Thus we have, at time T, two estimates o f  the true state x(T).  
These are: 

xp(T), predicted by a model 

X m (T), based on measurement. 

The best estimate o f x ( T )  is denoted }(T)  and is determined by the relation 

So(T) = Oxp(T) + (1 - O)xm(T) 

where 0 is a coefficient between 0 and 1 whose value is determined by the relative 
statistical confidence that can be placed in the accuracy of  the model and of  the 
measurement (see Figure 12.3). 

A whole armoury of  techniques, under the generic name Kalman filter, deals with 
all aspects o f  the application to different situations. 

12.3  T h e  K a l m a n  f i l t er  - m o r e  de ta i l  

Figure 12.4 shows the Kalman filter connected to a process with inaccessible state 
vector x( j ) .  It is assumed that the process state and the measurement vector y( j )  
are corrupted by Gaussian noises w(j) ,  v( j )  respectively, with diagonal covariance 
matrices Q, R. 
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u(j-1) 
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state x(j) 
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vector used as 
feedback 
~(j/j) 

--• Kalman gain L_,._g 
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~ ~(j/j~) ~ 

y(J) 

Figure 12.4 The Ka lman  f i l ter  connected  to a process  with inaccessible state so as 
to f e e d  back an estimate o f  the process  state f o r  closed loop control 

The process is assumed to have the model: 

x ( j )  = A x ( j  - 1) + B u ( j  - 1) + E w ( j  - 1) / (12.1) 
y ( j )  = C ( x ) ( j )  + v ( j )  ! 

At time t = ( j  - 1)T, the discrete-time, linear model [A, B, C] is supplied with 
a previous best estimate of  the state, designated as ~ ( j  - 1 / j  - 1) and with a measured 
value of  u ( j  - 1). Then, using the equation 

f c ( j / j  - 1) = A,~( j  - 1 / j  - 1) + B u ( j  - 1)/  (12.2) 

~ ( j )  C f : ( j / j  - 1) ! 
a one step ahead prediction of  the state and of  the corresponding output is made. 
(Note that since w, v, are Gaussian, they have zero mean and hence do not appear in 
the prediction (eqn. 12.2).) When time t = j T  is reached, the output prediction error 
~ ( j )  can be calculated from the equation 

~ ( j )  = y ( j )  - ~ ( j )  (12.3) 

Finally, we obtain the current best estimate fc ( j / j )  by adding to the model prediction 
. ~ ( j / j  - 1), a correction term, proportional to ~( j ) ,  according to the equation 

f c ( j / j )  -= . ~ ( j / j  - l) + K ( j ) ~ ( j )  (12.4) 

K ( j )  is called the Kalman  gain matrix  and it must be chosen so that the estimates 
} ( j / j )  are optimal in some sense. However, before considering optimality, it can 
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be seen from the block diagram that the Kalman gain is within a feedback loop and 
the wider question arises: will the sequence [ ~ ( j / j ) ]  converge to x ( j ) .  I f  so, how 
quickly will it converge? Will there be a bias in the estimate? How accurate must the 
process model be? What if the process is non-linear? How accurately must covariance 
matrices Q, R be specified? What if w, v are non-Gaussian? What time step T needs 
to be chosen for the discretisation? What if the process is time-varying or some of its 
parameters are not known a p r i o r i ?  

The practical questions will be considered later but now we return to the question 
of choosing the optimal gain matrix K ( j ) .  

12.4 Obtaining the optimal gain matrix 

From eqns. 12.3 and 12.4, 

S c ( j / j )  = ~ ( j / j  - 1) + K ( j ) [ y ( j )  - C . ~ ( j / j  - 1)] 

Then using eqn. 12.2 

. ~ ( j / j )  = A . ~ ( j  - 1 / j  - 1) ÷ B u ( j  - 1) 

+ K ( j ) [ y ( j )  - C S c ( j / j  - 1)] 

The state estimation error is defined as: 

. ~ ( j )  = x ( j )  - S c ( j / j )  

but 

and 

x ( j )  = A x ( j  - 1) + B u ( j  - 1) + w ( j  - 1) 

(12.5) 

(12.6) 

(12.7) 

(12.8) 

y ( j )  = C x ( j )  + v ( j )  

= C [ A x ( j  - 1) + B u ( j  - 1) + w ( j  - 1)l + v ( j )  (12.9) 

Substituting eqn. 12.9 into eqn. 12.6 yields 

2 ( j )  = [I  - K ( j ) C ] [ A 2 ( j  - 1) + E w ( j  - 1)] - K ( j ) v ( j )  (12.10) 

Define 

P ( j )  = 8[Yc( j ) .Tc( j )  T] 

where g indicates expected value and where the superscript T indicates transpose. 
P is a covariance matrix that indicates the accuracy of the state estimation. The 
system of Figure 12.4 is linear and the disturbing signals are Gaussian. Under these 
conditions, the solution of eqn. 12.10 to yield the gain matrix K ( j )  that minimises 
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the estimation error is yielded by application of classical optimal control theory. In 
fact the optimal estimation problem and the optimal control problem lead to the same 
equations, and for this reason the two problems are often considered to be duals. 

After some manipulation whose detail is omitted (but see for instance Grover- 
Brown, 1992) the optimal gain matrix is found to be 

K( j )  = M ( j ) c T ( c M ( j ) C  r + R) -1 

where 

M(j )  = A P ( j  - 1)a T + E Q E  T 

P ( j )  = (I - K ( j ) C ) M ( j )  

Notice that the equations for K(j )  contain no measured data and that therefore they 
may be solved for all values of j in advance, off-line, if need be. 

The optimal state estimator is given by 

Sc(jlj) = (1 - K(j)C)[ASc(j  - l l j  - 1) -t- B u ( j  - 1)] + K ( j ) y ( j )  

and we can return to Figure 12.4, to understand how the algorithm is coupled in real 
time to the process whose state is to be estimated. 

12.5 Prerequisites for successful application of the Kalman filter 
in the form shown in Figure 12.4 

(i) There must exist a 'sufficiently accurate' linear, discrete-time, time-invariant 
process model (A, B, C, E). 

(ii) The disturbing noises v, w must be Gaussian with zero mean and their covariance 
matrices R, Q must be known. 

(iii) On-line computing power must be available, capable ofperforming the necessary 
calculations within a time interval that will usually be dictated by the process 
dynamics. 

12.6 Discussion of points arising 

(i) Time varying processes: The Kalman filter theory is applicable directly to a time 
varying process {A (j), B( j ) ,  C(j) ,  E(j)}. 

(ii) Continuous time processes: Most processes to which the Kalman filter is to be 
applied will operate in continuous time. Such processes must be approximated 
by discrete time models. The discretisation process is easily performed but care 
must be taken not to introduce serious errors into models during discretisation 
(see Leigh, 1987b, pp. 71-87). 

(iii) Non-linear processes: Most important processes are non-linear and the usual 
procedure is to use a different linear approximation {A(j), B ( j ) ,  C ( j ) ,  E(j)} 
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to represent the process at each time step jT. This procedure is equivalent to 
linearising about a time trajectory. The filter operating in the way described is 
usually referred to as the extended Kalman filter. 

(iv) Complex processes: The Kalman filter for a complex process will, of necessity, 
be based around a low-order approximation to the process. 

(v) Processes that vary with time in unknown ways: A process that is changing 
with time may have some or all of  its model parameters estimated numerically 
in real time from measured process data. The procedure may be performed 
separately from the Kalman filtering operation. Alternatively, the required model 
parameters may be estimated, along with the process states, using the Kalman 
filter. In essence, such model parameter estimation is performed by relabelling 
as state variables those parameters that are to be estimated. Such relabelling 
clearly introduces artificial non-linearities into the process equations. These non- 
linearities are dealt with by linearisation in the same way as when the process 
equations are inherently non-linear. 

(vi) Non-Gaussian disturbance signals: A non-Gaussian signal (say, r(z)) can be 
treated by synthesing a filter transfer function (say G(z)) such that 

r(z) = G(z)v(z) 

where v(z) is a white noise signal. 
Thus, by adding a new element G to the process model, the requirement that 

v shall be a Gaussian signal of zero mean may be met. The element G used in 
this way is sometimes referred to as a colouring filter. 

(vii) Disturbing signals v, w have covariance matrices R, Q that are unknown: 
Experimental observation of signals may give some quantitative information on 
the numerical values for R, Q. Simulation studies of the Kalman filter coupled 
to a process model will usually give considerable guidance of the choice of  R 
and Q since these matrices affect the convergence of the estimate of the state 
to its true value (the true value of the state is, of course, known in a simulation 
study). By performing simulation runs with different choices of  R and Q, it is 
usually possible to choose compromise values that will yield good convergence 
over a wide range of conditions. 

Use of  the innovation sequence to modify R and Q 
The sequence {~(j)} is known as the innovation sequence. Under ideal conditions, 
when all the initially stated assumptions are satisfied, the innovation sequence will 
be Gaussian with zero mean. It therefore follows that bias or non-Gaussianness in 
the innovation sequence may be used in a corrective on-line feedback loop to modify 
parameters, for example in the colouring filter G(z) described in section (vi) above. 

12.7 Planning, forecasting and prediction 

Almost every human activity is undertaken based on assumptions and expectations 
about the future. We choose a particular action from a set of possible actions in the 
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Figure 12.6 Model-assisted decision making 

expectation that a particular outcome will result. In other words, before we decide 
on a course of action, we predict what the outcome will be. Good prediction is 
clearly a prerequisite for good decision making. This broad idea of decision making 
is illustrated in Figure 12.5 and the idea of model based predictions assisting decision 
making in Figure 12.6. 

12.7.1 Approaches to prediction 

Possibly the simplest approach to prediction is to extrapolate a curve of previous 
behaviour (Figure 12.7). 

Such an approach has obvious limitations and obvious refinements are possible. 
For instance, known cyclic behaviour can be allowed for (an electricity generating 
utility attempting to forecast future demand will have access to previous records 
showing daily, weekly and annual cyclic demand variations). 

Curve extrapolation can be mechanised in various ways. However, all these ways 
are passive, in the sense that they do not allow for any actions that we may wish to take 
to influence the future shape of the curve. The effect of actions on the future shape 
of the curve might be quantified by running a sufficient number of experiments in 
which different types and magnitudes of actions were taken. The inter-relations could 
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Figure 12. 7 Prediction by curve extrapolation 

then be determined by statistical means. Clearly different strategies for planting and 
fertilising crops could be evaluated in this way so that a model, based on wide-ranging 
experimentation, might guide full-scale growing strategies. 

12.7.2 Physically based models for  prediction 

Lunar eclipses can be predicted with remarkable precision, far into the future, because 
the phenomena involved can be completely modelled by solvable deterministic equa- 
tions having coefficients that are known numerically. All other phenomena that can 
be deterministically modelled in this way will also be completely predictable. 

Thus, the outcome when two billiard balls collide is predictable because the mass, 
resilience and velocity of the balls are measurable properties and the laws governing 
elastic collisions are exactly known. If several million gas molecules obeying the 
same laws as billiard balls are involved in collisions, then, although in theory it 
would be possible to model each individual collision, it will in practice be necessary 
to predict the future aggregate behaviour as described by a small number of statistical 
variables. Conversely, predicting the weather, the price of oil, the exchange rate of 
the pound sterling against the dollar, the stock market index, the efficiency of a new 
drug or the financial viability of a new business venture are all extremely difficult, 
but nonetheless all are undertaken intensively throughout the world as an essential 
prerequisite to significant decisions of one sort or another. 

12.8 Predictive control 

Coales and Noton (1956) pioneered an approach in which a fast on-line model of 
a process generated control actions for application to the real process. The strategy can 
produce performances close to time-optimal for the control of switched systems. Since 
then a whole range of model-based control strategies has emerged; see Section 19. ! 5 
for key references to this area. 

Notes: Source material and suggestions for further reading to support the topics of this chapter will be 
found in Chapter 19. See in particular Section 19.6. 



Chapter 13 

Non-linearity 

13.1 What is meant by non-linearity 

If  John gets 10 hectathrills by taking to a ball a lady aged 24 and of height 5 ft 5 ins, 
how many hectathrills would he obtain by taking to the same ball a lady of height 
10ft lOins and aged 48? (With apologies for the failure to use SI units and with 
acknowledgments to Linderholm, 1972.) 

In the linear world, the relation between cause and effect is constant and the 
relation is quite independent of magnitude. For instance, if  a force of  1 newton, 
applied to a mass m, causes the mass to accelerate at a rate a, then according to a 
linear model, a force of  100 newtons, applied to the same mass, will produce an 
acceleration of 100 a. 

Strictly a linear function f must satisfy the following two conditions, where it is 
assumed that the function operates on inputs u I (t), U2 (t), u 1 (t) + u2 (t), ~u (t), where 

is a scalar multiplier: 

(i) f ( u l  (t)) + f (u2  (t)) = f ( u l  (t) + u2(t)) 
(ii) f (otUl (t ) ) = ot f (U1 (t ) ). 

Any system whose input-output characteristic does not satisfy the above conditions 
is classified as a non-linear system. Thus, there is no unifying feature present in non- 
linear systems except the absence of linearity. Non-linear systems sometimes may 
not be capable of  analytic description; they may sometimes be discontinuous or they 
may contain well understood smooth mathematical functions. 

The following statements are broadly true for non-linear systems: 

(i) Matrix and vector methods, transform methods, block-diagram algebra, fre- 
quency response methods, poles and zeros and root loci are all inapplicable. 

(ii) Available methods of analysis are concerned almost entirely with providing 
limited stability information. 

(iii) System design/synthesis methods scarcely exist. 



168 Control theory 

(iv) Numerical simulation of non-linear systems may yield results that are misleading 
or at least difficult to interpret. This is because, in general, the behaviour of a non- 
linear system is structurally different in different regions of  state space (where 
state space X is defined for a non-linear system according to the equation 

2 = f ( x , u )  y = g(x) andx c X 

where the n-dimensional state vector x can be visualised as being made available 
for control purposes by a non-linear observer with inputs u and y and with output 
2 where as usual the superscript/x indicates an estimated value). 

Thus, the same system may be locally stable, unstable, heavily damped or oscilla- 
tory, according to the operating region in which it is tested. For a linear system, local 
and global behaviour are identical within a scaling factor - they are topologically 
the same. For a non-linear system it is in general meaningless to speak of global 
behaviour. 

Very loosely, we can organise our thinking about non-linearity with the aid of  
Figure 13.1. This shows that: 

(a) very few systems are strictly linear 
(b) a larger class of systems is approximately linear 
(c) a strongly non-linear class exists 
(d) a class whose non-linearity is its most important characteristic exists and needs 

special consideration. 

Linear methods will normally be applied to class (b) without any discussion. 
Systems in class (c) will often be linearised to allow certain types of  controller 

synthesis to be carried out. Checks by numerical simulation of the complete unap- 
proximated system plus controller will then be used to determine whether the designs 

(a) linear systems 
(b) approximately 

linear systems 

(c) strongly 
non-linear 
systems 

(d) class of 
systems whose 
non-linearity is 
their most 
important 
characteristic 

Figure 13.1 A loose classification of  systems in terms oflinearity/non-linearity 
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(based on linearised approximation) will be sufficiently valid in practice over a choice 
of envisaged operating conditions. 

Systems in class (d) have their behaviour dominated by non-linearity. Such 
systems include: 

(i) Stable oscillators: Governed by continuous non-linear differential equations 
such as the van der Pol equation. This type of equation exhibits, for the right 
choice of parameters, limit cycle behaviour. This stable oscillatory behaviour, 
essentially non-linear in its origins, is very interesting and has been much studied 
(see Andronov et al., 1973; van der Pol, 1927). 

(ii) Relay and switched systems: The systems appear deceptively simple, but, 
because of the discontinuous non-linearity, special techniques of analysis are 
required. Because switched systems are both cheap and high-performing, they 
are frequently applied in industry, even in situations for which they are not too 
well suited (see Tsien, 1954). 

(iii) Avarietyofsystems exhibitingjumpresonance, stick-slipmotion, backlash and 
hysteresis: All of these phenomena can be present as insidious and persistent 
degraders of performance of control loops (see Gibson, 1963). 

13.2 Approaches to the analysis of  non-linear systems 

As discussed in (ii) above, available methods of analysis are concerned almost entirely 
with providing stability information. 

Lyapunov's second or direct method 

Already described in Chapter 7, it is the only approach that involves no approxima- 
tion. However, the information produced by application of the method is of limited 
value for system design. For instance, with the aid of the method, a control loop 
of guaranteed stability may be synthesised. This means that the designed system, if 
perturbed, will return to equilibrium - maybe in one second, may be in 100 000 s or 
more. Information on actual performance is totally lacking. 

Lyapunov's first method 

A beautiful method that depends on local linearisation. It is summarised later in this 
chapter. Again, the method has little or no design applicability. 

Describing function method (described later in this chapter) 
This is a linearisation method in which sinusoidal analysis proceeds by the expedient 
of neglecting harmonics generated by the non-linearities. Thus the approximation 
consists in working only with the fundamental of any waveform generated. The 
describing function method can be a powerful design tool for a very restricted class 
of problems. 
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Figure 13.2 A linear envelope that bounds a class of (memoryless) non-linearities 

Sector bound methods 
A non-linear function f may be contained within two straight line boundaries. Each of 
these boundaries is a linear function (Figure 13.2). Envelope methods (a description 
that is by no means universal and which in fact may have been coined by the author) 
are based on the idea of ensuring system stability in the presence of any and every 
function that can reside in the envelope. Clearly the stability results obtained by 
envelope methods will be sufficient, but not necessary, conditions, since the worst 
case within the envelope has to be allowed for. Envelope methods are made more 
interesting by the existence of two famous conjectures. These are: 

Aizerman's conjecture roughly states: Let S be a system containing a non-linearity 
that can be contained within the linear envelope, Figure 13.2. If when the non-linearity 
is replaced by any linear function within the sector as visualised in Figure 13.2, the 
resulting loop is stable, then the system S is itself stable. Aizerman's conjecture is 
false, as shown by counter-example. 

Kalman's conjecture roughly states: If a system satisfies Aizerman's conjecture, 
together with additional reassuring constraints on derivatives, the system S will be 
stable. Kalman's conjecture is also false, as shown by counter-example (see Leigh, 
1983b). 

It is interesting to speculate on the reasons for the failure of the two conjectures. The 
easiest line of reasoning, although not necessarily correct, is that harmonics present 
in the sinusoidal response of the non-linear system have no counterpart in the linear 
systems that represent the bounds of the approximating sector. 

13.3 The describing function method for analysis of 
control loops containing non-linearities 

This method is specifically applicable to a closed loop containing dynamic non- 
linearities that can be decomposed into a non-linear non-dynamic block of gain N(a) 
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Figure 13.3 The loop containing a linear dynamic system and a non-linear non- 
dynamic system that is analysed by the describing function method 
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Figure 13.4 a A non-linear element 
b A linear approximation to the non-linear element in (a) 

followed by a linear dynamic block of  transfer function G(s) (see Figure 13.3). The 
notation N(a) emphasises that N is an amplitude-dependent gain. 

As a simple illustration of  the nature of  N(a), consider a non-linearity that on 
receiving a constant input a produces a constant output a 2. We can see that the gain is 

output a 2 
- -  - - a  

input a 

Referring to Figure 13.4, we shall assume for linearisation purposes that the output 
o f  the block in Figure 13.4a is to be approximated as closely as possible by the output 
of  the block in Figure 13.4b. 

For purposes of  illustrating the approach of  the describing function, we consider 
a non-linearity f that does not induce a non-zero mean level or cause a phase shift in 
response to a sinusoidal input. In such a case, the bracketed terms in the output o f  the 
block in Figure 13.4b disappear and we are left to find the k that causes best agreement 
between the terms f (a sin wt) and ka sin o)t. We define the error between these terms 
as e(t) and then proceed to choose k to minimise the integral of  the squared error. 

This approach is considered more satisfying than the usual approach of  simply 
neglecting harmonic terms in a Fourier expansion, although the two approaches lead 
to the same result. Hence, let 

e(t) + f (a  sin o)t) - ka sin tot 

We wish to minimise 

1 
J -~ ~-~ J0 e(t) 2 dwt 
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Substitute for e and differentiate: 

~J  2 fo 2Jr ak - 2zr [ f ( a  sin ogt) - ka sin ogt](-a sin ogt)dogt 

-- ka 2 sin 2 ogt dogt = -- a sin ogt f (a sin ogt )dogt 
~ j'g 

l k a 2 ( 2 t  sin2ogt)2OJr l fo2rr = --  a sin ogt f ( a  sin ogt)dwt 
7g Yr 

kazr ---- ka 1 f ]2Jr 
= -- a sin ogt f ( a  sin ogt)dogt 

zr J r j o  

Finally 

1 
k = -- sin wt f (a sin wt)do9t 

r rd0 

k can be seen to be the first term in the Fourier expansion of  the output o f  the 
non-linear block of  Figure 13.4a. 

To see how the describing function method develops from this point onward see 
Grensted (1962) or Leigh (1983b). 

However, it can be said that, briefly, the further development consists in deriving 
two loci, one for the non-linear element N(a)  (which, recall, has no dynamics) and 
one for the dynamic element G(s)  (which, by definition, is linear). The first locus is 
a function of  amplitude (a) only while the second is a function of  frequncy (o9) only. 

Especially interesting is the point or points where G(jog)N(a)  = - 1 ,  since at 
such points there is potentially continuous oscillation around the closed loop. Such 
points are revealed by plotting loci o f  G(jog) and - 1 / N ( a )  in the same complex 
plane and seeking their points o f  intersection. 

The describing function method is sufficiently developed to be able to say whether 
stable oscillations will occur at an intersection ofloci  (i.e. that the system is 'attracted' 
to such points) or whether it is ' repelled'  from them. 

13.4 Linear second-order systems in the state plane 

Note that the name phase plane is used for the special case where (see below) x2 is 
the derivative of  Xl. 

Every linear second-order system with zero input can be expressed in the form 

• "~1 = a l l X l  q - a 1 2 x 2  

-~2 : - a 2 1 x l  -k-a22x2 

where the xi are state variables and the a i j  a r e  numerical coefficients, or .ic = A x  
where x and A are defined by the equivalence between the two representations. 
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Figure 13.5 The state plane diagram for a second-order linear system with two 
real negative eigenvalues 3.1, )~2 

The system has one critical point, where x = 0. This point is always the origin 
(0, 0). 

A graph ofx2 against xl is called the state plane (Figure 13.5). Solutions of the 
equation 

~c = Ax,  x(O) = xo 

plotted in the state plane with time as a parameter along them, are called trajectories. 
A state plane supplemented by representative trajectories is called a state portrait. 
The trajectories of a stable system reach or approach the origin of state space with 
increasing time. Conversely, the trajectories of an unstable system start from the 
origin and move outwards from it with increasing time. 

If the matrix A has two real and distinct eigenvectors then these eigenvectors are 
important fundamental trajectories and every solution that is not an eigenvector is 
a weighted sum of both eigenvectors. The rate of movement of a solution along an 
eigenvector depends on the magnitude of the associated eigenvalue. (An eigenvalue 
of large magnitude implies rapid movement of the solution along the eigenvector.) 
All of these points are illustrated in Figure 13.5. 

If the matrix A has complex eigenvalues then the solution is an expanding spiral, 
if the real part of the eigenvalues is positive, and a shrinking spiral if the real part of 
the eigenvalues is negative. All the spirals are equiangular spirals - that is, the spirals 
move outwards or inwards at a constant angle - measured against a rotating vector 
centred at the origin. These points are illustrated in Figure 13.6. Thus, the global 
behaviour of a linear second order system may be characterised by the eigenvalues 
and eigenvectors of the system matrix A. 
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b The 'feasible '  state portrait for the equation used in (a) 

13.5 Non-linear second-order systems in the state plane 

Consider the set o f  non-linear second-order systems that can be written in the form, 
where f l ,  f2, are differentiable functions 

J:l : f l  (Xl, x2) 

.it2 : f 2 ( x l , x 2 )  
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The system has a number of critical points, given by solving the equations 

f l ( X l , X 2 )  = f 2 ( X l , X 2 )  = 0 

Let these points be denoted cl, c 2 , . . . ,  Cn. 
The equations may be linearised (see Chapter 9) to produce the A matrix with 

typical element 

a i j  - -  OXj 

By substituting the coordinates of the separate critical points into the general 
expression for the A matrix, we produce n, generally different, A matrices, 
A C l ,  . . .  , A c n .  

Now in a small region around each of the critical points, the actual sys- 
tem behaviour is governed by the eigenvalues and eigenvectors of the appropriate 
A matrix. Thus the behaviour of the non-linear system in the immediate neighbour- 
hood of critical points may easily be determined, and for many, but not all, non-linear 
systems, a phase portrait of  the complete behaviour may easily be approximately 
constructed by continuing the solutions found around each critical point until they 
join together in a feasible way. (A few numerical solutions of the original non-linear 
equations can serve to check on the behaviour of any particular trajectory.) A simple 
example illustrates all these points. 

Example: The non-linear equation is 

J¢l ~ X 2  

~2 ~ --Xl --X~ --X2 

Critical points are (0, 0) and ( -  1, 0). 
The A matrix is 

A 2xl 

so that 

A(0,0) = _ _ , A(-1,0) = 1 - 1  

A(0,0) has complex eigenvalues with negative real part; A(-1,0) has real eigenvalues 
+ 1.08 and -2.08 with associated eigenvectors 

(100  ) 
The local behaviour around the two critical points is therefore found to be as in 

Figure 13.7a and the feasible state portrait obtained by continuation and joining of 
trajectories is shown in Figure 13.7b. 
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13.6 Process non-linearity - large signal problems 

Consider the operations off 

(i) accelerating a load using an electric motor 
(ii) heating a block of metal in a furnace 

(iii) growing a population of microorganisms 
(iv) filling a vessel with liquid. 

Each operation has upper limits on its achievable rate of  change. In every case, the 
upper limits are set by rather basic aspects of the design and the upper limits can only 
be increased by fairly fundamental re-design of the operations. 

Linear control theory (by definition) knows nothing about these limiting factors. 
Therefore, we may arrange for the limits to be so high that they are never encountered. 
The process then appears linear but possibly at a high cost in equipment. A more usual 
approach is to design on linear assumptions although knowing that upper excursions 
of signals will be sometimes affected by non-linearities. Such an approach needs 
to be followed by an assessment of the effect on overall performance of the non- 
linearities. (Such an assessment can be undertaken by either deterministic or stochastic 
simulations.) 

13.7 Process non-linearity- small signal problems 

Consider (the A level syllabus for once comes in useful) a wooden block at position 
x on a rough level surface. A small force f is applied where shown (Figure 13.8) 
and f is gradually increased until when f > fs (see Figure 13.9) the block suddenly 

wooden 
block rough 

force applied f i, L /surface 

Figure 13.8 A block of wood on a rough surface 

frictional 
resistance 
between block 
and surface 

velocity 

Figure 13.9 The supposed friction characterisation between block and surface in 
Figure 13.9 
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accelerates away. It is now clear that the block will either not move at all (if f < fs) 
or, i f f  > fs, it will move by some minimum amount. In accurate positioning control 
systems, stiction, for instance in bearings, causes precisely the same difficulty, i.e. 
there is a minimum unavoidable distance that a shaft must move from rest, if it is to 
move at all. This phenomenon is sometimes referred to as stick-slip motion. 

Other types of  small signal non-linearity occur in gear trains. 
Considering large and small scale linearities simultaneously, it does emerge that, 

quite often, a high performance requirement will necessitate the purchase o f  equip- 
ment that is linear across a very wide signal range. Such equipment is very expensive, 
and, sadly, we cannot usually obtain high performance by attaching a clever control 
system to a cheap process that has only a narrow range of  linear operation. 

Note: Source material and suggestions for further reading to support the topics of this chapter will be 
found in Chapter 19. See in particular Section 19.7. 



Chapter 14 

Optimisation 

14.1 Init ial  d i scuss ion  

Optimisation is concerned with finding the best possible solution, formally referred 
to as the optimal solution, to a particular problem. The term optimisation is often 
used very loosely in general speech but in control theory it has a precise meaning: the 
action of finding the best possible solution as defined by an unambiguous criterion 
(or cost function). 

Optimisation has, to some extent deservedly, acquired a reputation for being out 
of touch with reality. This is because the analytic techniques for optimisation are 
highly involved and in order to make headway many workers have resorted to drastic 
modification of the original problem to allow application of some particular optimi- 
sation technique; i.e. simplistic assumptions about the problem have, unsurprisingly, 
produced simplistic solutions. Currently, more healthy attitudes are beginning to 
prevail. For instance, it is becoming accepted that, for large complex problems, it 
may be better to encode optimality criteria in more vague but more realistic terms 
than parallel human evaluation criteria, than to force unwilling problems into an 
ill-fitting straitjacket to allow rigorous optimisation. With these reservations having 
been made, it is possible to turn to the ideas and techniques of optimisation theory and 
practice. 

14.2 O p t i m i s a t i o n  - a few ideas  that  can f o r m  bui ld ing  b locks  

Case 1: 

(a) 

(b) 

A mathematical function may take on a maximum value (Figure 14.1). 

If we know the 'formula' for the function f ,  the maximum value can be found 
by the methods of elementary calculus. 
If f is not known as a function, but nevertheless particular values, f (x~) ,  
f(x2) . . . . .  can be generated for chosen values xl, x2 . . . . .  then it will clearly 
be possible to find the maximum value, to any desired value of accuracy, by 
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Figure 14.1 The function takes on a maximum value where the first derivative 
d f  / d x  is zero 

f(x) 
f 

J 
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Figure 14.2 The function takes on a maximum value at the upper end o f  the 
restricted (closed) interval 

Notice that here d f  / d x  # 0 

numerical search. The efficiency of such a numerical search will vary widely 
according to the approach used, but almost any conceivable approach would 
succeed in approaching the maximum to whatever accuracy is required. 

Case 2: A mathematical function, on a restricted interval o f  x, will always take on 
a maximum value (Figure 14.2) 

Strictly, any continuous function defined on a closed interval will take on maximum 
and minimum values on that interval. 

This is Weierstrass' theorem (see Hardy, 1963). 
Note in this case that, as suggested in Figure 14.2, the maximum value may be at 

a boundary point and that, at a boundary point, the derivative of f will not necessarily 
be zero and that therefore the ordinary methods of calculus will not suffice to find 
such maxima. 

Case 3: A scalar valued function o f  n variables, i.e. f : ]R n --~ IR 1 may take on 
a maximum value 
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A scalar-valued function for n = 2 is illustrated in Figure 14.3: 

(a) I f  the formula for f is known, then, again, ordinary methods of  calculus will 
suffice to determine the maximum (i.e. V f  = 0 at the maximum).  

(b) I f  the formula for f is not known but nevertheless particular solutions can be 
generated numerically, then it is possible to imagine searching in the parameter 
space to find the particular values o f x l ,  x2, . .  •, Xn that maximise the function, 
but, whereas in case l(b) it was clear that any algorithm, however amateur, 
would eventually locate the maximum value when x was a single variable, it 
is now by no means obvious how to search n-dimensional parameter space in 
a meaningful way. Even in the simple case sketched in Figure 14.3 for n = 2, 
considerable ingenuity has to be exercised in devising search algorithms. 

Should the function f have a less circular shape in parameter space (i.e. as in 
Figure 14.4) then successful searching can be expected to be increasingly difficult. 

Case 4: A scalar valued function f : 1R n ~ ]~1 defined on a closed region 
of  parameter space, will take on its maximum value on that region 
(Figure 14.5). 

Figure 14.3 

Figure 14.4 

X2 
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x 
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The scalar values function o f  two variables takes on a maximum value 
where O f /Sxl ,  O f /Ox2 are both simultaneously zero 

maximum I 

x2] J value off 

f(xl, x2) 

Another scalar valued function of  two variables. Here the elongated 
contours make numerical searching for the maximum difficult 
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Figure 14.5 A scalar valued function of  two variables will take on its maximum 
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u(t) 

time t~ 

Figure 14.6 A specimen continuous function defined on [to, t f ] 

Case 5: One particular function amongst a set o f  continuous functions on an interval 
may maximise a scalar valued cost function (Figure 14.6). 

A specimen problem is as follows: From the set of  all continuous real valued differ- 
entiable functions, u(t) : [to, t f ] -+ u(t) E ~1 × t, choose that particular function 
u*(t), t c [to, tf], that maximises 

f ( u ( t ) ) , f  : R  1 × t -+ ~1 

f is a scalar-valued criterion (cost-function) operating on the set of  all real valued 
continuous functions u(t) that are defined on the interval [to, tf]. Even a casual 
inspection will show that this problem is very much more difficult than those defined 
earlier as cases 1 to 4. 

An infinite set o f  candidate functions u(t) exists, and although it is quite easy 
to envisage finding a numerical approximation to u (t) using some form of  computa- 
tional search algorithm, the analytic method of  determining u (t) exactly is a classical 
mathematical method of  great power and beauty. 

This analytic method forms part of  the subject usually called the calculus of  
variations. 
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u(t) + e*(t) 

t=0 

time 

t=t 

Figure 14.7 The supposed optimal curve u ( t ) and an arbitrary variant u ( t ) + e(p ( t ) 

In its simplest form the method determines the curve u(t) that, passing through 
two fixed end points, minimises a given integral. 

f01' J = f ( u , f i , t ) d t  (14.1) 

Figure 14.7 shows the supposed optimal curve u (t) and one arbitrary variant u (t) + 
E4~ (t), q~ (t) an arbitrary function and e a scalar. The variant function is approximated 
by the first two terms of  a Taylor series. Manipulation then produces the condition 
for optimality. 

f0 dp Ou dt -~u dt = O (14.2) 

However, q~ (t) was chosen arbitrarily; hence the optimality condition reduces to 

Ou dt O-~ = 0 (14.3) 

This is the Euler-Lagrange necessary condition for optimality of  the curve. 

Use of  the calculus of  variations to solve control problems: In optimal control prob- 
lems the differential equations that model the process to be controlled must be satisfied 
at all times while, simultaneously, the Euler-Lagrange conditions have to be met. The 
extension of  the calculus of  variations to meet this requirement is usually performed 
by the use of  Lagrange multipliers. 

Suppose that the optimal control problem is to choose a(t) on the interval [0, t f l  
so that the process with model 

21 = x2 / 
(14.4) / -~2 = X l  --U 

behaves so as to minimise 

fo If J =  f ( x , ~ , t )  (14.5) 



184 Control theory 

The Lagrange multipliers 2.1,2.2 are introduced by enhancing the expression for J to 

fo If J = f ( x , k , t )  q-)~l(JCl --  x2) q-)~2(22 - X l  + u )  (14.6) 

Minimisation of the enhanced expression for J,  still using the calculus of variations 
approach, will now minimise the original J while satisfying the equality constraints 
imposed by the process. After the Lagrange multipliers have served their purpose 
in this way, they are eliminated by substitution. The result obtained is an optimal 
control strategy, specifying a c u r v e  Uopt(t) on the interval [0, t f] that, when input to 
the process (as modelled by eqn. 14.4), will result in a performance that minimises J. 

Case 6: One particular function amongst a set o f functions satisfying an inequality 
constraint may maximise a scalar valued cost function. 

A specimen problem is as follows: From the set of (not necessarily continuous) 
functions 

u(t) : [to, t f]  ~ u(t)  x R 1 x t 

that satisfy the constraint 

Ilu(t)ll ~ m [m is a constant, for all t in [to, tf].  

Let us choose that particular function u*(t), t ~ [to, t f]  that maximises 

f ( u ( t ) ) ,  f :~;{1 × t --+ I~ 1 

Notice that u(t) has to remain within the admissible region shown in Figure 14.8. 
We observe that many practical optimisation problems arising in control appli- 

cations are subject to a constraint on signal magnitude similar to (or possibly more 
complex than) the constraint outlined here. Very often, the optimal function u*(t) 
will be found to take values on the boundary of the admissible region for some or all 
of the time period (to, tf), as in Figure 14.9. 

u(t) 

to 

admissible region 
/ for u(t) 

\ \ \ \ \ 7 , \ \ \  

\ \ \ \ \ \ \ \ \  
tf 

time 

Figure 14.8 The admissible region in which u ( t ) must remain 



u( t )  

a func t ion  u(t) that  lies 
on the const ra in t  for  
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t o tf 

Figure 14.9 The optimal u*(t) will often take values on the boundary of the 
admissible region 

This problem may turn out to be either more or less difficult than that of  case 5. 
It is more difficult than case 5 in that the presence of the constraint makes it more 
difficult to apply methods analagous to ordinary calculus, such as those that will be 
described as suitable for case 5. The problem may be easier than that of case 5 in those 
cases where it is possible to say in advance that the optimal solution u*(t) operates 
along the boundaries of the region during the whole of the time period (to, tf) with 
a finite number of  switchings between these extreme values. Finding the optimal 
solution u*(t) then amounts to the simpler (?) problem of determining the finite set 
of switchover times. 

The above six problems, cases 1 to 6, illustrate in a simplified way the range and 
nature of optimisation problems that are encountered in control theory. It must be 
emphasised though that the problems 1 to 6 as described concentrate only on the core 
features. Any realistic optimisation problem requires a quite extensive framework 
involving dynamic system models, a possibly complex criterion function and, where 
appropriate, mechanisms for taking constraints into account. 

14.2.1 Discussion 

We begin by listing some general points: 

(i) Even the simplest optimal control problem involves a process model and a cost 
function J.  The process model can be considered to impose equality constants 
on the minimisation of J.  

(ii) The choice of J is difficult in every real case - a compromise always has to be 
reached between relevance and mathematical tractability. Forcing a complex, 
often unquantifiable, problem to have a simplistic cost function is a serious but 
very common mishandling of optimisation. 

(iii) In most control problems, the magnitude ofthe controls must not exceed certain 
upper limits. The upper limits can be considered to be inequality constraints 
on the minimisation of J .  

(iv) Inequality constraints (see iii) prevent the calculus of  variations being applied. 
Pontryagin's maximum principle or the method of dynamic programming then 
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(viii) 

need to be used. (The situation to be dealt with is essentially a generalisation 
of that where a function defined on a closed interval is to be maximised - the 
methods of ordinary calculus cannot be used because the maximum may not 
be a turning point - see Figure 14.2.) 

(v) The methods discussed above all yield open loop optimisation strategies, i.e. 
they specify Uopt (t) for all t in the time interval of  interest. It is usually imprac- 
tical to implement open loop optimisation, except in a few special cases and 
the strategies need to be converted to closed loop algorithms. This conversion 
is always possible provided that J is a quadratic form and that the process 
model is linear. Under these, very restrictive, conditions the optimal feedback 
law is yielded by solution of a Riccati equation. Even then, the Riccati equa- 
tion has time varying coefficients, making it difficult to implement, unless the 
optimisation horizon is infinite. 

(vi) The optimal feedback algorithm produced by solution of the Riccati equation 
usually requires all of  the process states to be measureable on-line. If  some of 
the process states are inaccessible, a state estimator will need to be developed 
to make those states available on-line. 

(vii) I f  a state estimator feeds an optimal feedback algorithm, the question arises: 
Does the combination of optimal estimator and optimal controller yield the 
overall optimum solution (since usually, a set of  interconnected optimal sub- 
systems would not combine into an overall optimal system)? This problem is 
addressed by the separation theorem. This roughly states that, if the system is 
linear, the noise signals Gaussian and the cost function quadratic, then overall 
optimisation will be yielded by a combination of optimal state estimator and 
optimal feedback controller. 
The effects discussed in (i)-(vii) above add together to make realistic optimisa- 
tion of a real process a very difficult task indeed. There is nevertheless a great 
potential for optimisation techniques to lead the way in approaches to the coor- 
dination of complex processes involving many hundreds of elements and in 
extracting additional productivity from systems containing complex process 
mechanisms (such as microorganisms). 

(ix) The literature on optimisation is enormous. Some suggestions are made in 
Section 19.8. 

We now go on to discuss one particular optimisation problem - that of time-optimal 
control. This topic forms just one aspect of  optimisation as discussed above and in no 
sense is it different or isolated. Here it has been singled out for amplification because 
the development is quite pleasing, leading to a geometric interpretation and a link 
across to operator methods of system representation. 

14.3 Time-optimal control 

Assume that, in the system of Figure 14.10 the shaft is at rest at position 00 and it is 
required to bring it in minimum time to a new rest position of 01. 
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Figure 14.10 

(a) 

Figure 14.11 

shaft 
angular 

power to position 0 
motor 

A motor driving an inertia load 

(b) 

area = 01 - 0 0 
~ t i m e  to 

complete ~ 
vement "~ 

time 

time to 
area = 01 - 0 0 complete 

movement 

time 

Two possible velocity profiles that each result in the movement of the 
shaft from position Oo to position O1 

(a) 

Figure 14.12 

maximum 
allowable 
velocity 

"~'I area=Ol O° 

time 

(b) 

a la am U, m 
slope 

area=Ol-O o 

time 

a Minimum time velocity profile for the case where velocity is 
constrained but acceleration is unconstrained 

b Minimum time velocity profile for the case where acceleration is 
constrained but velocity is unconstrained 

We can think of  the problem in the following way: the quantity (01 - 0o) is fixed 
and all possible solutions can be sketched as velocity/time graphs. It is clear that, to 
obtain a minimum time solution, we must have the steepest initial rise in velocity 
followed by the steepest possible fall (since, in graphs like that of  Figure 14.11, we 
need to generate maximum area beneath the graph in the shortest time interval; i.e. 
the ideal velocity profile is rectangular with infinite acceleration/deceleration). 

Idealised situations in which there are constraints on velocity but not on accel- 
eration (case a)  and vice versa (case b) are shown in Figure 14.12. It can be seen 
that the minimum time solution is only meaningful if  there are constraints on veloc- 
ity or acceleration - for otherwise the minimum time would approach zero as the 
acceleration/deceleration increased without limit (Figure 14.13). 
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./area=Ol-Oo 

time to 
complete 
movement 

time 

Figure 14.13 A min imum time solution with no imposed constraints tends in the 
limit to an infinite velocity spike 

Thus we can see that the minimum time solution requires maximum acceleration 
followed by maximum deceleration, with the only decision being the time at which the 
changeover is to be made between these regimes. A control that stays on one constraint 
or another all the time (r igorously-  almost all the time) is called a bang-bang control. 

It is a result in optimal control theory that every minimum-time control problem 
has a bang-bang solution and it therefore follows that if the minimum-time control 
problem has a unique solution then that solution is a bang-bang solution. 

14A Time-optimal control - a geometric view 

Let the system o f  Figure 14.14 be at an initial state x 0 at time t O. Consider a time t t > t o 
and let ~ represent the set o f  admissible (i.e. constrained) controls defined on the closed 
interval (to, tl ). 

Figure 14.14 The sys tem whose  t ime-opt imal  control  we  study 

Now let ~1 represent the region in state space X to which the state x can be driven 
in time tl - to by the application o f  all possible admissible controls in f t  1. Consider 
next a time t 2 > tl, and let ~2 represent the set o f  admissible controls defined on the 
interval [to, t2]. It is clear that the region ~2  in X to which the state can be driven in 
time t2 - to must contain the region ~,1. 

Thus, considering times t l , t2, . . .  ,tn with tn > "-"t2 > tl, the reachable regions 
in state space will have the form shown in Figure 14.15. The meaning o f  these regions 
is that any point x in region ~ i  can be reached in time t i - t O. Under reasonable 
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Figure 14.15 Reachable regions in state space 

assumptions of  smoothness the region ~ grows smoothly with increasing time, so that, 
given any chosen point Xd, there exists some unique time, say t *, for which x d ~ ~ ~ (t * ) 
i.e. x d is a boundary point of  the closed set ~ (t *). 

This means that: 

(i ) Xd cannot be reached from xo by the application of  admissible controls in any time 
t < t * .  

(ii) Xd can be reached in time t* and, because (i) applies, t* can be seen to be the 
minimum time. 

To summarise, a point Xd can be reached in minimum time t* if  and only i f  x d belongs 
to the boundary ~ ( t * )  of  the reachable set ~(t*) (see Figure 14.16). 

~(t*) a~(t*) 

~ (t2) 

\ \ ~ , ~ ( t  1) 

Figure 14.16 Xd belongs to the boundary o f  the region R(t*) 

In Figure 14.15 Xd cannot be reached in time tl. Xd can be reached in time t* and 
this will be the minimum time solution. Xd can be reached in time t2 but this is not the 
minimum possible time. In this case, if  the requirement is to reach point Xd at time t2, 

: theproblem is not a minimum timeproblem. 

The shape of  the reachable set 
We have already observed the useful property that the set ~ grows smoothly with time. 
Now we turn to examine the shape of  ~ .  

l f  the system that we are studying is linear then it can be represented by a linear 
transformation, say P, operating on the initial condition xo and the chosen control u (t ) 
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to produce a new state, i.e. 

e : ~xo, u)  ~ x 

where xo ~ X, u ~ 9(to, t f ) for  some fixed t f ,  

x 6 X  

And in this sense we can define ~ ( t  f ) as 

~ ( t f )  = {xlu ~ ~2} 

This can be stated more simply as 

P : f l ~  ~ 

i.e. the linear transformation P maps the region ~ into the region ~ .  
We now note that convexity is invariant under linear transformation (see Hardy, 

1963), and thus i f  the set fl  is convex (strictly convex) then ~ will also be convex 
(strictly convex), provided that the system under study is linear (Figure 14.17). 

the line joining any the line joining any 
2 points in the set 2 points in the set 
is in the interior of  lies in the set 
the set 

the line joining 
some pair of 
points in the set 
is partly outside the set 

Figure 14.17 a A s t r i c t ly  c o n v e x  se t  

b A c o n v e x  se t  
c A n o n - c o n v e x  se t  

Geometrically a set C is convex i f  the line joining any two points in C belongs wholly 
to C. (For strict convexity the line joining every two points must be in the interior o f  C,) 

The shape o f  the set ~2 o f  admissible controls 
It is surprisingly rewarding to examine the shape o f  ~ as it relates to practical con- 
strained control problems. For simplicity, we will concentrate on the case where the 
control input u is a vector with two elements u 1 (t),  u2(t).  

The most common constraints encountered in practical applications are: 

(a) Ul( t )  2 + u 2 ( t )  2 <~ m foral l t ,  m afixedscalar 
(b) lu l ( t ) l  ÷ lu2(t)l <~ m foral l t ,  maf ixedscalar  
(c) max{]ul(t)l, lu2(t)]} <~ m foral l t ,  maf ixedscalar  

The shape o f  these constrained sets for  the three cases is shown in Figure 14.18. (This 
is the usual Euclidian norm on the space U.) 
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(a) (b) + (c) 

Figure 14.18 a The set f l  for the Euclidean norm 
b The set ~ for the absolute value norm 
c The set ~2 for the maximum value norm 

All the sets are convex but only case A has a strictly convex constraint set. (Almost all 
comparisons seem to end up confirming the superiority of  least squares as a criterion.) 
Thus, for linear systems with constraints on U defined by approaches (a), (b) and (c), 
the set ,~ will have one of  the shapes sketched above. 

The significance of  the shape of  the set 
It can also be shown that, i f  the set ~ is compact, then the optimal control u to reach Xd 
is unique if  x d E ~ ( t )for some t. The interior mapping theorem then shows that u must 
attain its maximum if it is to be an optimal control. Finally, Lyapunov's theorem that 
the range o f  a vector measure is closed allows the bang-bang nature o f  a unique time- 
optimal control to be proved. Geometrically this shows that time optimality requires 
Xd ~ ~(t*)  and that the pre-image of  xd in 9 belongs to 39 (Figure 14,19), 

~(t*) 

5.~(t*) 

Figure 14.19 Time optimality requires that the pre-image o f  xd belongs to 3~2 

14B The following geometric argument can form a basis for the 
development of algorithms or for the proof of the Pontryagin 
maximum principle 

Let x d ~ :3,~(t*); then there exists a hyperplane M that supports ,~ at Xd I M can be 
represented as the translation of  the null space of some non-linear functional g on the 
space X i. e. 

MI= {x[g(x) = C} C a realnumber 
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can also (Riez representation theorem) be written 

(x,g) 

where g is a normal to the hyperplane M 

x d e ~ ( t* )  f3 M 

and 

(xd,g) ---- sup x(x ,g)  

i.e. x d is the farthest point from x in the set ~ ( t* )  in the direction g but x = Pu, while 
i f  x d = Pu with x d ~ 6~( t ) ,  then u is an optimal control on [0, t*]. Further, i f  xd is an 
extreme point o f  ~ ( t* )  then u is the unique optimal control. 

14C Construction of time-optimal controls 

.4 linear dynamic system has equations 

Jc(t) = A(t)x( t)  + B(t)u(t) 

or equivalently 

x(t)  = O(t)x(to) ~( t  - r)B(r)u(r) dr  

= O(t)x(to) + O ( t ) f ]  O(- r )B( r )u ( r )d r  

The control problem is, given Xd ~ X, choose u(t) ~ f~ where ~ = {ullu(t)l ~ k} 
such that 

(i) x(t*) = Xd 
(ii) t* = in f{ t ix ( t )  = xd, t  >i to} 

and define 

e(t) = • -1 (t)Xd -- x(to) 

The control objective then is to choose u such that 

fj e(t*) = ~ , - l ( r ) B ( r ) u ( r ) d r  ~= Q ( r ) u ( r ) d r  

Assume there exists an optimal control, then, necessarily, 

e(t*) e ~&(t*) N M 



Optimisation 193 

where 

,~(t*) ~= {r(t*)lu ~ ~2 x [tot*]} 

f2 M = {xlg(x) = C},r(t) = Q(r)u(r)dr 

(M is a hyperplane, g is a functional on JO for some function g and for some constant C. 
Now, as we have seen, for optimality 

(e(t*),g} = sup(r(t*),g) = sup Q(r)u(r)g dz 
u u J t o 

(Sj _'l'q 
<~ [Q(r)gl q d r )  Ilullp 

<. . . k ( f f * lQ(r )g lqdr )  l/q 

The condition for optimality is that equality should exist in the inequality chain, i.e. 

u ( r )  = ~ 1 Q ( r ) g l  q/p sign(Q(r), g) 

where et is a constant to be determined and 

1 1 
- + - = 1  
q P 

When U is an L ~ space, the optimality condition reduces to 

u ( r )  = ~ s i g n ( Q ( r ) g )  

but liu41o~ = k for optimality; hence c~ = k to give 

u(z )  = k s i g n ( Q ( r ) g )  

t* and g have to be computed and Kranc and Sarachik (1963) suggests appropriate 
methods. 

Note: Source material and suggestions for further reading to support the topics of this chapter will be 
found in Chapter 19. See in particular Section 19.8. 



Chapter 15 

Distributed systems 

15.1 The cosy idealisation that a system can be characterised 
by its behaviour at a point in space 

Because of exposure to school physics and what in the UK is called applied 
mathematics, we are conditioned to accept without question that, for instance, an 
object, missile or projectile, flying through space, can be truthfully represented by a 
single point located at the object's centre of mass. This practice, while allowing neat 
examination questions, leads us into a false sense of simplistic security. For instance, 
as soon as a projectile is made to spin about its axis of travel (a common practice), we 
may be unprepared for the escalation of complexity of the problem that this simple 
addition to the problem causes. 

Physically large systems can rarely have their characteristics approximated at 
a point in space without severe and often unacceptable levels of approximation. It 
seems to be a very interesting law of nature that increased size brings increased 
non-uniformity. 

For instance, a small sample of the Earth's atmosphere, say a few metres square, 
will be approximately uniform. However, seen on a scale of hundreds of kilometres, 
there is extreme non-uniformity in the atmosphere, with discrete cloud forms sep- 
arated by cloudless atmosphere and there are gusting winds interspersed by calm 
regions. 

Given a system whose spatial behaviour needs to be modelled, there are three 
possible approaches. 

(1) To model the global behaviour by a single set of partial differential equations. 
The solution is then obtained by numerical methods that, depending on dis- 
cretisation, approximate one partial differential equation by a set of ordinary 
differential equations. 

(2) To spatially discretise the physical problem into regions within which the 
behaviour can, with sufficient accuracy, be representable at a point. For each 
region, an ordinary differential equation is needed. This equation is formulated, 
identified and solved in the usual way for such equations. 
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(3) 

Note, however, that, when the solution from the set of differential equations 
is patched together to yield the overall system solution, there may be spurious 
results generated at the (physically non-existent) boundaries that separate the 
notional regions used in the discretisation. Rosenbrock and Storey (1966) has 
illustrated spurious results of this sort. 
'Fourier type' modelling in which the distribution is modelled approximately 
but to any required degree of accuracy by a weighted sum of basis functions ~ .  
More specifically, if the function to be approximated on the interval [x0, Xl ] is 
g(x), then scalars c~i are chosen to minimise 

fx, g (x) - o l i  fi (k) dk 
0 i=0 

Preferably the basis functions fi satisfy 

(fi , f j)  = 0 ,  i # j  

i.e. they are orthogonal. This produces two (related) practical advantages. 
(i) The values of~i do not depend on n; i.e. let ~ =  t O'i f / b e  the best third order 

fit to some given function g(x); then the best fourth order fit y~'41 ~ i f / t o  
g(x) will have unchanged ~i values for i = 1 to 3. 

(ii) The models will be well-behaved (as opposed to ill-conditioned) - when 
non-orthogonal functions are used a minor change in the curve for g (x) may 
produce large changes in several of the oti. These large changes, largely self- 
cancelling in their overall effect on function behaviour, prevent confidence 
being established in the numerical values of the ~i- 

15.2 Alternative approaches to the modelling of distributed systems 

15.2.1 The representation of a spatial region as the summation 
of elemental regions 

This approach, familiar to all who have studied mathematical physics, proceeds by 
defining a small element of dimension 6x, 6y, 6z and then using equations of conser- 
vation and continuity, in conjunction with the usual methods of calculus, in which 
the size of the element is reduced by a limiting process to have dimension dx, dy, dz, 
to obtain a partial differential equation in the four variables x, j ,  z, t. The approach 
produces classical partial differential equations that have been extensively studied 
and that have known solutions. 

Difficulties that may be encountered are: 

(i) The region under study may not divide naturally into regularly shaped elements 
so that approximations or awkward accommodations at the boundaries may have 
to be made. 
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(ii) The 'natural '  element spatial regions will often, in an industrial application, be 
variable shapes that may change position. 

(iii) Numerical solutions will nearly always involve a return to approximation of  
the region by a finite number of  discrete regions, in each of  which an ordinary 
differential equation govems the local behaviour. 

(iv) Fictitious discontinuities - present between the regions defined in (ii) above but 
not present in the real process - may cause spurious effects, such as travelling 
waves, to appear as part o f  the model behaviour. 

(v) For a typical industrial process whose detailed mechanisms are very complex, 
it will be the preferred approach to set up a simple model whose structure is 
determined from theoretical considerations and whose coefficients are found 
numerically using parameter estimation techniques on process data. Such a mod- 
elling identification procedure is difficult or impossible to carry out on most real 
processes, using a classical partial differential equation approach. 

15.2.2 A 'Fourier type' approach, in which an arbitrary function f on 
an interval [0, 1] is approximated by a summation o f  functions f i 

We postulate that 

oo 

f = y ~ c i f i  (15.1) 

i = 0  

where f is the function to be approximated on [0, 1 ], f/ are basis functions, each 
defined on [0, 1 ] and the ci are scalar valued coefficients. 

Many questions immediately arise: 

(i) Under what conditions on f and fi will the series ofeqn.  15.1 be convergent? 
(ii) Define fn = zin=o ci f i .  We ask: can fn be used as a reasonable approximation 

to fn? Can we obtain an error estimate for f - fn? Can we, operating with fn 
instead of  f ,  still work within a sound theoretical framework? 

(iii) What choice of  functions f / w i l l  form a basis for the function space? 
(iv) What choice of  functions f / w i l l  be numerically convenient and widely appli- 

cable [we have in mind orthogonality (is it necessary?) and behaviour at the 
end points 0 and 1 (we would like to avoid the enforced condition, typical o f  
Fourier series that, necessarily, f ( 0 )  = f (1)) ] .  

(v) Is it an advantage if the functions fi are the eigenfunctions of  some operator? 
I f  so, can that operator be found in a real situation? 

(vi) Do the set o f  functions {f/, i ---- 1 . . . .  } form a state in the rigorous sense? 
(vii) How may the coefficients ci be determined from numerically logged process 

data? 
(viii) Can an equation 2 = Ax + Bu, x E X, u E U, where X is the set o f  system 

states, U is the set o f  input functions and A, B are operators, be set up, identified 
and used analogously with the usual finite dimensional control equation of  the 
same form? 
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(ix) To what extent can the theory of operators, compact operators, closed operators, 
self-adjoint operators and semigroups be usefully exploited? 

(x) Can specific use be made ofthe projection theorem whereby a function (infinite 
dimensional) is approximated by its projection onto a finite dimensional 
subspace? 

15A When can the behaviour in a region be weft approximated 
at a point? 

An interesting question is: are there fundamental guidelines to help the decision on 
whether a given situation can be well-approximated by the behaviour at a point? (If 
such guidelines can be.found, they might be extremely useful in helping to choose the 
size and shape of  regions, when spatial discretisation does turn out to be required.) 

One such guideline, attributable to Roots (1969), is as follows: 
Let fmax represent the highest frequency of  interest to which a spatial region is 

subject. Let I represent the largest physical distance in the region. Then provided that 

I << 1/:max 

a point representation (i.e. an ordinary differential equation model) will be justifiable. 
The argument appears to be that, i f  the physical size o f  the region to be modelled is 
much smaller than the shortest wavelength o f  externally applied stimuli, then the speed 
of  propagation of  effects may be regarded as instantaneous. 

The relationship proposed above leaves a number of  unanswered questions. For 
instance, in the heating of  a solid object, the thermal conductivity o f  the material wouM 
clearly influence the uniformity o f  temperature that would be achieved under conditions 
o f  externally applied periodic heating stimuli, yet the proposed relation can take no 
account o f  this. 

Even where a situation can be modelled exactly by unapproximated partial differen- 
tial equations and the solution is obtained analytically, there is still a possible anomaly 
in that (for instance) the temperature distribution in a long bar is supposed to evolve 
as shown in Figure 15.1, i.e. the implication is that the speed of  propogation is infinite 
(seedohn, 1975, pp. 175, 176). 

Figure 15.1 

(a) temperature (b) temperature 
t 

distance distance 

a A supposed initial temperature distribution in a long bar at 
t = O -  

b The form of the temperature distribution at t = 0 + 
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15B Oscillating and osculating approximation of curves 

For Fourier series and for other series of orthogonal functions (Hermite, Laguerre), 
the approximating series approaches the required function through closer and closer 
oscillations. In marked contrast, the Taylor series approaches the required function by 
osculating at the point around which the expansion is being made. At that point, the 
approximation and the function approximated have exactly the same derivatives up to 
and including the nth derivative, for an nth order Taylor series. Figure 15.2 shows 
successive terms of  a Taylor series beingfitted to the function sin x. This section follows 
Sommerfeld (1949) which should be consulted far further details. 

Taylor 
expansion 
made about x=O 

"-\ ',,, 

/ /  

first order 
/ Taylor 

/ /  approximation 
/ /  to sill X 

/ /  D fitch order 
/ ~ ~ J / T a y l o r  

/ " \ \  " ~  approximation 

third order N x 
Taylor \ y = sin x 
approximation 

Figure 15.2 The approximation o f  sin x by three different orders o f  Taylor 
series expansions 



Chapter 16 

An introduction to robust control design 
using Ha methods 

16.1 Motivation 

Many promising optimisation techniques have, in the past, failed to live up to their 
promise, one of the most important reasons for this failure being the lack of robustness 
in the methods. In particular, very complex plant models were often produced and 
then naively assumed to be accurate representations of the real world. The inevitable 
mismatches between the assumed (let us say, nominal) models and the real-world 
processes destroyed the viability of many approaches. 

H~  approaches, by specifically taking into account modelling uncertainty, and 
doing so in a worst case sense, allow complex control design problems to be solved 
in a theoretically rigorous way while guaranteeing robustness of the implemented 
solutions over a prespecified range of model incorrectness or (equivalently) of process 
variability. 

In this chapter, we review the linear spaces that underlie much of modem 
operator-based control theory with particular emphasis on the theory underlying H ~  
approaches. Some of the H~  control design methodology is then introduced in very 
simple terms to establish the basic ideas. The chapter ends with an introduction to 
a deeply satisfying and visualisable approach: the v gap metric method, which is 
firmly embedded within the H~  family but which is both powerful and general as 
well as intuitive. 

16.2 Hardy spaces (Hp,p > 0 spaces) and their relevance 
to control problems 

Hardy spaces (see Section 16A) are of value in control problem formulation since 
they provide a rigorous theoretical foundation for representing the Laplace or Fourier 
transform models of linear dynamical systems together with an easy link to equivalent 
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time domain representations. The spaces H2 and H ~  are the spaces of  primary 
interest. 

Linear multivariable optimisation problems with quadratic cost functions can be 
formulated and solved very satisfactorily in an/42 setting in a coherent way. Optimi- 
sation in an / /2  setting can in fact be considered as a more modem replacement for 
linear quadratic Gaussian (LQG) approaches. Note that, by convention, the H2 norm 
is applied to transfer functions/transfer matrices and the L 2 norm to time functions. 

H ~  is the Hardy space of  all stable linear time-invariant continuous time system 
models and the H ~  norm is a scalar measure of  the upper limit o f  the gain of  a transfer 
function G (w) of  a matrix of  such transfer functions as frequency co is varied. 

The suffix p 

The suffix p indicates that the space Hp is furnished with the p norm, so that given 
any element x (and such elements will normally be functions) belonging to Hp, we 
can measure the 's ize '  o f x  by a norm such as 

[IxHp = (fo°° lx(t)f ) Up (16.1) 

Elementary  i l lustration - the effect o f  choice o f p  on the nature o f  the n o r m  

Figure 16.1 shows a time function. We evaluate its norm using eqn. 16.1 for values 
of  p = 1,2 . . . . .  256 and have plotted the results in Figure 16.2. We observe (as 
emphasised by the starred arrow in Figure 16.2) that as p -+ co, I ] f l l~  -+ fmax; 
in other words the H ~  norm of  a function simply measures the peak value of  the 
function over a specified interval. H ~  then is a convenient function space where the 
functions are normed according to their maximal values (strictly suprema). 

In our example of  Figure 16.1 and the plot o f  Figure 16.2, it was the case that 

11 lip ~ II [Iq, p > q 

20 

I 1 

0 T time 50 

III 

I 2 lOO 
I 

Figure 16.1 Test function to illustrate the effect of the choice of p 
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y - -  

J [ I 
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8 16 32 64 128 256 
value ofp 

Illustrating how the norm of the function of Figure 16.1 is affected by 
the choice of p 

-1 

-1 

÷ p ~ o o  

--  p=2 

p=l  

p=0.5 

Figure 16.3 The shape of the unit ball in real 2-space for different values of p 

and this is a general rule with equality holding only for functions of  constant 
magnitude. 

N o n - e l e m e n t a r y  a s i d e  

Note carefully though that two functions that differ only at isolated points (i.e. they 
differ only on a set o f  measure zero) will have identical norms. This point is of  
considerable mathematical interest in the theory of  Lebesgue integration. 

In control applications, it will be rare to use values of  p other than p = 1,2 or ~ .  
The choice o f  p = 1 leads to 'integral of  absolute error' criteria which are sometimes 
used in loop tuning criteria. The choice of  p = 2 leads to quadratic criteria which 
are ubiquitous since they lead to convexity and tractability, convexity being perhaps 
second only to linearity as a desirable quality. Note (Figure 16.3) how the unit ball 
satisfying 

IlXUp = 1 
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looks for various values of  p. From Figure 16.3 it can be seen that the unit ball has 
the highly desirable property of  strict convexity only for the case p = 2. 

What about Hp for p < 1? It will be found that when p < 1, lip is no longer 
a normed space since the hoped-for norm fails the triangle inequality (which is one 
of the necessary conditions that a norm must satisfy): 

Ilxll[ + IIx211 ~ Ilxl +x211 

as the following simple example for the real plane with p = 0.5 demonstrates. 
Let 

X l = ( 1 , 0 ) ,  x 2 = ( 0 , 1 )  sothat x l + x 2 = ( 1 , 1 )  

Then 

2 

xl x2=1 but x+x2 : l ± x i  J 2 t i =  

which contravenes the triangle inequality. 

- - 4  

16.3 A simple view of Hoo control loop design 

16.3.1 Guaranteed stability o f  a feedback loop 

Zames (1976, 1981) is credited with founding Hoo theory around the basic idea 
that a control loop can be represented by operators whose maximum gain across all 
frequencies (speaking loosely) can be represented by the H ~  norm. 

It is a key result of  elementary control theory that the loop of Figure 16.4 will be 
input-output stable provided either: 

(1) that the gain of the GD combination is less than unity at all frequencies; or 
(2) that the phase lag of the GD combination is less than 180 ° at all frequencies. 

But we can now express condition (1) in H ~  language as: the closed loop of 
Figure 16.4 can be guaranteed I/O stable provided that II G (w) D (w) II ~ < 1 (it being 
understood that for this example the H ~  norm represents the maximum gain at any 
frequency). 

Figure 16. 4 

v ~ e ~ _ ~  D ~_a~ G I y 

Basic feedback control loop 
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60 . . . . . . . .  . . . .  

m* In frequency 
\ 

Figure 16.5 A possible Bode magnitude plot for D(s)G(s) 

Figure 16. 6 Feedback control of a process with uncertainty A G 

Figure 16.5 shows a Bode magnitude sketch for a possible G (s) D (s) combination. 
It has a peak value of around 60 dB at frequency w*. This means that 

Ily(s)ll 
< IIG(s)D(s)ll~ ~ 4.1 

Ire(s) II - 

(converting 60 dB to a linear gain) and it can be seen that the H ~  norm is simply the 
peak value of the Bode magnitude plot. 

16.3.2 Robust stability of  a closed loop 

Consider next the closed loop of Figure 16.6 in which G represents the best available 
(nominal) process model and A G represents a deterministic model of the maximum 
model uncertainty. This closed loop can be guaranteed stable provided that 

II(G(w) + AG(co))O(~o)ll~ < 1 

and this inequality is the very essence of robust control design using H ~  methods. 
Quoting Lunze (1989), it can be seen that D(S) might be considered to be 

a stabilising common controller for the family of  process models that exist within 
the G + AG envelope. 

What more needs to be done or discussed before H ~  ideas can be applied in 
anger? Very roughly the following: 

(i) Above, we considered only input-output stability - below we shall consider 
total internal stability. This will involve considering a matrix of four transfer 
functions even in the single-input single-output case. 
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The implication of (i) above is that we need a method for defining the 
H~ norm of a matrix, not necessarily square, of transfer functions. Of course, 
matrix transfer functions are also involved in the generalisation to multivariable 
problems. 

(ii) Ensuring stability by simply keeping loop gain below some peak value is only 
an important elemental idea. A complete design procedure will ensure good 
dynamic and steady state responses and rejection of disturbances despite process 
model uncertainties while guaranteeing stability. Such design procedures will 
need to trade stability margins with performance targets, using high gains in those 
regions of the frequency spectrum where performance is critical with carefully 
chosen lower gains where stability is most critical. 

(iii) As would be expected, making a deterministic model of uncertainty is bound 
to be difficult since uncertainty is sure to be poorly defined and difficult to pin 
down. Three structures are explained below to allow the modelling of different 
types of uncertainty. 

(iv) We need to be able to define numerical algorithms for calculation of the H ~  
norms of process model/controller combinations. 

16.4 Total internal stability and design for disturbance rejection 

16.4.1 Se t t ing  the  s c e n e  

Consider a dynamic process with impulse response g (t). The output of such a process 
in response to an input u(t)  is given by the usual convolution integral 

£ y( t )  = g(t  - r ) u ( r ) d r  (16.2) 

and provided that the convolution integral is bounded on L2[0, oo) then we can take 
Laplace transforms and write 

y(s)  = G(s )u ( s )  

where the transfer function G(s), being bounded, belongs to H ~  and 

I[G[]~ : sup []Yl]2 
Ilull2<l 

Now consider the feedback loop of Figure 16.7 where a process of transfer function 
G is in a loop with a controller of transfer function D. 

It is easy to show from the diagram that the following matrix relation holds 

[z] = 

1 

1 + GD 1 +-GD v2 

D Vl 

I + G D  1T 

(16.3) 
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V1 u ~[ G Y 

Figure 16. 7 Closed loop control," G is a process and D a controller 

and the feedback system is internally stable if all four of the transfer functions within 
the matrix ofeqn. 16.3 belong to the space H~ .  A sufficient condition for this is that 

IIGDII~ < 1 (16.4) 

16.4.2 Robust stability 

Although a system such as the one in Figure 16.7 is guaranteed to be stable under the 
condition 16.4, there is for all practical systems a further requirement that the system 
should remain stable despite variations from nominal in the process G. 

A feedback control system that can be guaranteed to remain stable under a spec- 
ified range of process perturbations is said to possess robust stability. What we are 
discussing is the very common situation where the real process and its model differ 
by some margin, either because the process varies in quite complex ways, whereas 
the model is constant, or because the model is a considerable simplification of the 
real-world process. 

Some examples: the characteristics of  a strip rolling mill differ markedly accord- 
ing to the width, thickness and metallurgy of the product being rolled; the stabilisers 
of  a ship interact with the effect of the rudder and vary according to ship speed; an 
industrial biological process varies in a complex way as the batch progresses. For all 
these examples, no single model can exactly allow for those variabilities. Even with 
a fixed known process, the modeller will almost always have to neglect effects such 
as high order dynamics in the interests of keeping model complexity within bounds. 
As the examples hopefully demonstrate, process models can only represent the real 
process to within some margin of error which we will name AG. 

We assume the feedback loop for which a robust controller D is to be designed is 
as shown in Figure 16.7 and we also assume that the perturbation AG is bounded by 
the H ~  norm, i.e. 

lAG(w)] < IR(co)] (16.5) 
for almost all w 

for some R. A key result is that the system will remain internally stable under all 
perturbations possible within inequality 16.5 if and only if 

II RD(1 + GD)-I U ~ < 1 (16.6) 
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(-1, jO) 

Circle of radius R(m) I G(o)D(o) I 

Open loop frequency 
response of nominal 
system 

Figure 16.8 Nyquist diagram illustrating the stability inequality 16. 7 

To allow the concept to be appreciated in a Nyquist diagram context, we rearrange 
inequality 16.6 into the form 

R(co)lG(co)D(oJ)l < l1 + G(~o)D(oJ)l (16.7) 

The diagram, Figure 16.8, shows how the circle of model uncertainty must not enclose 
the -1  + j0 point, if stability is to be guaranteed in the closed loop system. 

The robust control design procedure is then to choose the controller D to satisfy 
the inequality 16.6 while simultaneously meeting all performance specifications such 
as response rates, accuracies and disturbance rejection requirements. 

It should be noted that: 

(i) the designer is given no guidance for the choice of controller D except that the 
frequency dependent inequality must be observed; 

(ii) the choice of a high value for R in an attempt to obtain a high degree of robustness 
will force down the inequality 'ceiling', resulting in a possibly unacceptable 
performance. Thus, not surprisingly, the overall design must balance performance 
and stability requirements. 

16.4.3 Disturbance rejection 

Disturbance rejection requirements can be injected into the H~c design procedure as 
follows. Suppose r is a disturbance signal whose effect on system output y is to be 
minimised and suppose also that r(s) is generated by the transfer function W from 
any disturbance signal Vl satisfying 

r(s) = W(s)vl(s) ]]Vl(O))U2 _< 1 (16.8) 

Then it can easily be shown that the disturbance effect can be minimised by minimising 
the quantity 

[] W(1 + GD) -1 [[oc (16.9) 
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If  we look at the two relations 16.6 and 16.9 relating to robust stability and noise 
rejection, respectively, another design compromise can be appreciated. 

Setting G = 1 and D = k, i.e. an ultra-simplistic situation to emphasise this 
point, we have from 16.6 that 

k 

k + l  

needs to be as small at possible while from 16.9 that 

1 

k + l  

also needs to be as small as possible. 
The first inequality is asking for k to be as small as possible whereas the second 

expression requires k as large as possible. The usual approach to this compromise 
will be to minimise 

T = HD(1 + GD) -1 (16.10) 

over that part of the frequency spectrum where accurate control is most critical and 
to minimise 

s = I1(1 + GD) -111~ (16.11) 

over that part of the frequency spectrum where disturbance rejection is most impor- 
tant. (S and T are often referred to as the sensitivity coefficient and complementary 
sensitivity coefficient, respectively.) 

This leads to the concept of 'loop shaping' in which the design of the controller 
D can be viewed as an interactive operation to achieve the best possible performance 
by satisfying a number of competing frequency-dependent targets and constraints. 

Ideally, since we would like 

T(co)= 1 S(co)=O for all co 

this would give perfect following and perfect noise rejection. However, it can be seen 
that in every case the following limits obtain 

lim IT(o9) 1 = 0 
O)---> O O  

lim IS(co)l = 1 
(O---> ~ 

so that the design procedure consists in getting the best overall system behaviour 
within the above constraints. This leads to a controller synthesis methodology some- 
times referred to as the mixed sensitivity approach, that results typically in magnitude 
versus frequency plots for S and T as shown in Figure 16.9. 

Note that near-optimal designs will have sharp roll-off characteristics requiring 
high order controllers and an iterative interactive design approach such as used by 
Kwakemaak (1993) where a detailed example is worked through. 
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1.5 

0.01 0.1 1 I0 100 1000 
frequency 

Figure l 6.9 The loop shaping concept showing variation of S and T with frequency 

-t G I 

Figure 16.10 Additive uncertainty model (G + AG) 

, G 1 

Figure 16.11 Multiplicative uncertainty model G(1 + AG) 

Because of the simple correspondences between time and frequency domain 
properties of H~  spaces, design approaches can be expressed and utilised equally 
well in the time domain using state space approaches. 

16.5 Specification of the AG envelope 

Clearly it will be difficult to specify AG in a standard generic form that fits a wide 
range of applications while remaining mathematically tractable. Considerable effort 
has been expended on the topic of 'identification for robust control' (see Chen, 
2000) since the overall credibility of Ho~ design approaches depends on realistic 
specification of the AG envelope. 

In the general case where G will be a matrix transfer function, it will be appreci- 
ated that the envelope of allowable uncertainty that we are calling AG must be able 
to represent the effects of, for example, individual parameters varying significantly, 
stochastic variation across a range of parameters and neglected dynamics that are in 
the real process but not in the model. Having noted the difficulty of specifying the 
AG envelope in a case-independent way we show in Figures 16.10-16.12 the three 
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r~j r tj ~ ] ~ 1  

Figure 16.12 Coprime factorisation uncertainty model. Factorising G to form G = 
M -  1N and then perturbing M, N, separately, leads to the diagram 
shown 

most common configurations for representing AG. The so-called coprime factorisa- 
tion model (16.12) allows for the most general modelling of mismatch including the 
mismatch of neglected dynamics. 

16.6 Deriving Hoo norms from dynamic process models 

16. 6.1 Singular values and eigenvalues 

Singular values and eigenvalues play a central role. Let A be any m z n matrix. Then 
singular value decomposition consists in finding orthonormal matrices U, V, i.e. 
satisfying 

and 

UU T = W T = I 

A = USV T 

where 

where ~ is a diagonal matrix of non-zero singular values ~i of A, usually arranged 
in descending order such that 

~1 >~2 > . - . > ~ r  > 0  

Note that the range space R(A) of A is generated by the set 

{ui}, i • [1,rl 

and the null space N(A) of A by the set 

{ui}, i E [r + l,n] 
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By convention, the largest singular value is denoted 

6 

and the smallest singular value by 

O" 

Consider the equation 

y = A x  

Then it can be seen that 

a(A) < [Y__II < 6(A) 
- Ixi - 

and therefore the operator norm is 

IIAL[ = ~(A) 

(since the operator norm is defined as 

LIAII = sup IIAxll2~ 

and if  G(s)  is a matrix transfer function such as 

I 
G l l ( S )  G l 2 ( S ) . . .  Glr(S)] 

i:: 
Gml(S) . . . . . .  Gmr(s)~ 

then an important result is that 

II a(jog)IIo~ = sup 6 (G) 
o) 

16.6.2 Eigenvalues o f  a rectangular matrix A 

Consider the equation 

y = A x  

4x*x \ ~..=a / 

(16.13) 

(16.14) 

(16.15) 

(16.16) 

where * indicates adjoint. (The adjoint o f  a vector or matrix is obtained by first 
transposing and then complex conjugating the elements.) Then 

]y]2 = ]Ax]2 ___ x*A*Ax 
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Note that a complex valued matrix A is self-adjoint (Hermitian) if A* = A. Self- 
adjoint matrices are always diagonalisable and always have real eigenvalues. Note 
also that (AB)* = B'A*. 

The matrix A*A is always square and self-adjoint (Hermitian) since 

(A'A)* = A'A** A*A 

It therefore has real non-negative eigenvalues ki. Let these be ordered such that 

),1 >2~2 > . . . _ > 0  

16. 6. 3 Singular values and their relation to eigenvalues 

The singular values of a matrix A are defined alternatively as 

~i = ~ (16.17) 

where ~-i are the eigenvalues of A*A and 

6(A) = ~.I/2(A*A) (16.18) 

where k is the largest eigenvalue ofA. 

16.6.4 Relations between frequency and time domains 

Of course the domains are linked through the convolution integral 

/0' y(t) = g(t - r )u ( r )  dr  (16.19) 

where g(t) is an impulse response (and provided that the convolution integral is 
bounded on L2[0, cx~), then we can take Laplace transforms and write 

y(s) = G(s)u(s) (16.20) 

where the transfer function G(s) being bounded belongs to Hec and 

llGIIoo = sup IIYlI2 
HuH2<I 

IIGIIoo = sup (G(co)) 
w~[0,2zr] 

and in the time domain 

Ily(t)ll2 
[IGIIoo = sup 

u~0 [lu(t)l[2 

(16.21) 

(16.22) 
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and the Hoo norm on G can be seen to be the usual norm on a mapping from the space 
of  time functions U to the space o f  time functions Y. (Note that 

"Y(t)'12=~fo~Y(t)Ty(t)dt) 

Finally we note from Parseval 's  theorem that 

11~112 = IlxH2 (16.23) 

where x is a time signal in 

L 2 [ - ~ ,  cX~] 

and 

in L2[-jw, jw] 

is the Fourier  or Laplace transform o fx .  

16.7 A promising visualisable design tool that works within 
the H ~  frame: the v gap metric 

16. 7.1 Introduction 
The following interesting quotation is from Vinnicombe (2001), as are all the results 
and examples in this section: 

One of the key aims of using feedback is to minimise the effects of lack of knowledge about the 
system which is to be controlled. Yet, one clearly needs to know something about that system 
in order to be able to design an effective feedback compensator for it. So, how accurate need 
a model be, and in what sense should it be accurate? Or, in other words, 'how much do we 
need to know about a system in order to design a feedback compensator that leaves the closed 
loop behaviour insensitive to that which we don't know?' 

Let G1 be the transfer function o f  a process that is to be controlled and let G2, G3 be 
perturbed versions o f  G 1. G 1, G2, G3 may be regarded as three possible models of  the 
same process for which a single (robust) controller is sought. The 'dis tance '  between 
any two processes Gi, Gj in terms o f  similarity ofbehaviour  when connected into a 
closed loop can be quantified by the v gap metric which has the property 

6v (GI ,G2)  = ~v(G2, G1) E [0, 11 (16.24) 

An algorithm for the calculation of  6v will be given after an illustrative example. 
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16. 7.2 Simple illustration of  the use of the v gap metric 

The following very simple example shows the value of the v gap metric as a guide- 
post in deciding how to group processes that may have widely differing open loop 
responses into clusters that can be successfully controlled by the same controller D. 
The value of such insight can hardly be overstated. 

Define three process models 

100 
G t - - -  

2 s + l  

100 
G 2 -  

2 s -  1 

100 
G 3 -  

(s + 1) 2 

Then a~ (G l, G2) = 0.02, whereas av (G1, G3) = 0.899, showing that the two models 
G1, G3 are very different from the point of view of the v gap metric, which (recall) 
has a maximum value of unity. 

One of the conclusions of this worked example is that the two processes G1, G2, 
one stable and the other unstable, would be expected to have very similar closed loop 
behaviours when controlled by the same controller D. 

Fixing the controller D = - 1 for both cases, we calculate the closed loop transfer 
functions for the two cases to be: 

G! 100 100 

1 - G 1 D  2s  + 1 + 100 2s + 101 

G2 100 100 

1 - G 2 D - -  2 s - l + 1 0 0  2 s + 9 9  

confirming the utility of  the gap metric in clustering open loop models according to 
their predicted closed loop behaviour. 

16. 7.3 More about the two metrics ~ and bG,D 

Provided that certain continuity conditions relating to right half-plane poles are sat- 
isfied (see Vinnicombe, 2001, for details), the following algorithm allows a~ to be 
calculated: 

(i ) x/1 a v ( G l ,  G2) 2 = + GTG2 1 + G2 (16.25) 

+c7a21T 
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Vl + y 
• G 

I D F 

Figure 16.13 Configuration for discussion of the measure bG,D 

The v gap metric approach also makes extensive use of  another metric, the quantity 
b, defined by the relation 

From Figure 16.13 it can be seen that 

I] if  [G, D] is stable 

o o  

otherwise 

(16.26) 

1 v2 
(16.27) 

(where for simplicity the weights 1/) i have been set to zero) and the expression inside 
the norm sign of  eqn. 16.26 is the transfer function between 

[::] [;] 
Properties of b6,o 

• bG,D ~ [0, 1] for any G, D. 
• bG, D is a bound for all eight transfer functions linking inputs and outputs in the 

closed loop. 
• bG,D ~ bD,G. 
• Let p be the 'distance'  between the two frequency reponses G(a~), D(oJ). Then 

bG,D = inf~o p(G(w), D(w)), that is, bG,D is the smallest distance between the 
frequency responses of  G and D. 

• We also define bopt (G) = suPD bG,D, i.e. this is the largest value over all possible 
linear controllers D. 

We want b to be as large as possible since then the quantity in the norm signs of  
eqn. 16.25 will be as small as possible. (This will correspond to minimising S and 
making T = 1 as we discussed before in Section 16.4.) 

Theorem 16.1 Given a nominal plant G 1, a controller D and a scalar fi, then (G 1, D) 
is stable for all plants G2 satisfying gv(Gl,  G2) _< fi if  bOlD > ft. 
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Theorem 16.2 Given a nominal plant GI, a perturbed plant G2 and a scalar /3 
satisfying /3 < /3opt(Gl) then (G2, D) is stable for all controllers D satisfying 
bGiD > fl if6v(G1,G2) </3. 

16. 7.4 The insight provided by the v gap metric 

The three quantities 

bG1 D, bGzD, ~v (G1,  G2)  

obey the following triangle inequality, visualisable in Figure 16.14: 

bGio > bG2D -- 3v(G1,G2) (16.28) 

The distance between models G1, G2 may be considered to be model uncertainty, 
and the idea can be taken further as follows. 

Consider the set of process models 

{G: ~v(G1, G2) </3} (16.29) 

Then any controller D satisfying 

bG1D > fl 

will stabilise every process model in the set specified in eqn. 16.29. Figure 16.15 is 
a visualisation aid to accompany the above result. 

GI 

6v(GI,G2) D 

G2 bG2D 

Figure 16.14 Visualisation of  the triangle inequality 

The set of G for which 
6r(Gi,G)<fl 

bopt(Gl) 

x~bG,D > l~ 

Figure 16.15 The controller D can stabilise every process whose model is within 
the inner circle 
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16. 7.5 Taking into account the weights shown in Figure 16.13 to allow 
loop shaping 

In order to reflect the performance and robustness requirements of individual designs 
it will be necessary to include the weights wi (~o) shown in Figure 16.13 into the defi- 
nitions to achieve loop shaping. The general idea as outlined above will be unchanged 
but robustness will now need to be achieved while observing loop shaping constraints 
that have been built into the definitions. 

16. 7.6 A discussion on the two metrics 3v and bG,D 

Consider two quite different industrial design scenarios: 

(i) A cruise (automatic highway speed) control is being designed that must operate 
on a range of trucks having different engine/transmission types. Further, each 
truck, in service, will operate with a range of loads over a range of highway 
gradients. 

(ii) A steel strip rolling mill rolls a variety of products of  differing widths, thickness, 
temperatures and hardnesses and is to have an automatic thickness control system 
designed. 

In both cases, it would be quite routine to design the necessary controllers using well 
established classical techniques were it not for the large envelope of variability in the 
processes to be controlled. Almost every real industrial control task has either feature 
(i) - a single controller is to be designed to be fitted into a wide range of products and 
the hope is to avoid having to customise for each application - or feature (ii) where a 
single process has to produce a range of products whose varying characteristics form 
part of the control loop. 

Suppose we were able to write a small number of transfer functions Gi that 
together spanned the required range of process variability. The Gi might vary in 
terms of parametric uncertainty or in terms of structure, or both. The v gap metric 
would then allow us to plot the Gi in a visualisable plane mutually separated by 
distances 

~v(Gi, G j) 

as indicated in Figure 16.16. 
Now encircle each of the Gi in Figure 16.16 by its own circle of radius flopt (Gi) 

as shown in Figure 16.17. 
Each circle defines the region within which stabilising controllers Di, for that 

particular Gi certainly exist. In the illustration given here, a range of constant con- 
trollers exists, in the region marked by the starred arrow in Figure 16.17, any one of 
which can stabilise any of the processes G2, G3, G4. The diagram indicates that a 
stabilising controller may not exist for the process G 1. 

The v gap metric approach is most valuable for multivariable problems where 
intuitive classical loop shaping cannot be applied. 

Vinnicombe (2001) is the source for all the material of  this section and that 
reference contains a systematic and detailed exposition with examples and proofs. 
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Let G j,...,G 4 be any set of process transfer functions. Then in an 
appropriate space they can all be displayed separated by their 
distances apart according to the v gap metric as shown: 

G4 
6,,(c~, G2 ) 

Ab 

f 
, G2 

~ / ' ~ , ( G  3, G 2 ) 

G3 

Processes that are close in the diagram have similar closed loop 
responses, although they may have very different open loop responses 

Figure 16.16 How the v gap metric and the b metric combine to provide powerful 
quantitative insight into stabilisability and robust control 

Figure 16.17 

The same processes, as in Fig. 16.16, now surrounded by 
their circles of radius bop t (G). 

How the v gap metric and the b metric combine to provide powerful 
quantitative insight into stabilisability and robust control 

16.8 Adaptivity versus robustness 

A robust  controller  is designed to control all processes having transfer functions,  
loosely speaking in the range G + A G  where A G  represents either 

(i) a bound  on model l ing  uncertainty, or  

(ii) an estimate o f  the envelope o f  variabil i ty for the process over different expected 
situations. 

Where  A G ,  the region of  process uncertainty,  is large, the performance with any  fixed 
robust  controller  may  be inadequate for the application. In such a case, there may  
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be an advantage in introducing a degree of adaptivity into the controller, allowing it, 
so far as possible, to track the parameters of the actual process, instead of having to 
allow a priori for the possible spread of parameters. 

The decision on whether to use robust design, adaptive control or a combination 
of the two will need to be made on a case-by-case basis, taking into the rate of change 
of process characteristics and the identifiability of the process parameters. 

16A A hierarchy of spaces 

Figure 16.18 shows how spaces are axiomatically defined with increasing structure 
as one passes down the diagram starting from topological spaces with few properties 
except connectedness, down through metric and normed spaces possessing measures o f  
size and distance, to the Lebesgue and Hardy spaces that give theoretical underpinning 
to much of  control theory. 

I (1) Linear (vector) spaces I (2) Topological spaces 
E 

Topological vector spaces having both 
properties (1) and (2) 

Metric spaces with concept of distance defined ] 

[Norme d spaces With 'size' of elements defined .......... ] 
t 

Banach spaces-normed spaces possessing 
'completeness' I 

H e spaces 

Hilbert spaces-Banach spaces where an 
inner product <, > is defined [ 

Hardy / 
Space~,...--- ~ 2  space ~ 

Lebesgue spaces 

Figure 16.18 A hierarchy o f  spaces showing increasing structure as the 
diagram progresses downwards 

Lebesgue spaces LP[a, b] 
Lebesgue spaces L P [ a , b ] (named after Henri Lebes gue (1875-1941) who developed 
the modern rigorous theory of integration based on a foundation o f  his pioneering 
work on measure theory) are defined as spaces of functions f where the integral exists. 
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The LP spaces are linear (vector) spaces since the sum of two integrable functions is 
again integrable and the scalar multiple of  an integrable function is again integrable. 
Note also that in LP spaces we are always dealing with equivalence classes of  function 
rather than with individual functions. This arises because functions that differ only at 
isolated points (more formally, functions that differ only on a set of  measure zero) are 
identical from an LP point of  view). 

Sequence spaces lP 

Let X be a set o f  sequences {xi } of  real numbers. Let every such sequence satisfy 

]xi I p < m < c~ 
i= I  

where p is a real number 

p E [1 , c~)  

Then m is a norm for X and X is called an I p space. When p = o0, we define 

I lx l t~  = sup(Ixi I) 
i 

Inclusion relations between spaces 

Let P be the space of  all polynomials, C n be the space of  all n times differentiable 
functions, C be the space of all continuous functions and let 1 < p < q < oo. Then, 
assuming that all the functions are defined on the same finite interval 

P C C ° °  CC1 C C  C L  °~ C L  q C L  p C L  1 

Let C be the set o f  all convergent sequences, CO be the set of  all sequences convergent 
to zero, and let 1 < p < q < o0. Then the following inclusion relations apply amongst 
the sequence spaces: 

1 t c l  p C1 q C C  0 c C c l  °° 

The norm of a linear mapping T 

The norm of  a linear mapping T is usually defined in terms of  a ratio of  L 2 norms on 
the domain and range spaces. 

Hardy spaces 

Hardy spaces have become increasingly important in control theory since about 1985. 
The foundations of  these spaces and their naming in 1923 in honour of  the Cambridge 
mathematician G, H. Hardy (1877-1947) is due to the Hungarian analyst E Riesz 
(1880-1956), who was one of  the founders of  functional analysis. Hardy spaces are 
important in harmonic analysis, power series, operator theory and random processes 
as well as in control theory. 
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The space He~ 
Hc~ is a member of the family of Hardy spaces (Hp, p > 0). It is the Banach space 
of all complex-valued functions of  a complex variable that are analytic and bounded in 
the right half plane where 

Res > 0 

Such functions have the norm 

Ilfll~ = sup If(s)l 
R e s > 0  

and by Fatou "s theorem, which says that these functions can be defined by their boundary 
values, 

IlflJ~ = esssup t f(jw)I 
co 

See Duren (2000) for the underpinning theory of Hp spaces. 

A note on notation 
There appears to be a rough consensus that Lebesgue spaces are denoted L p spaces 
(p being superscripO whereas Hardy spaces are denoted Hp (p being subscripO. I have 
followed this convention. 
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Chapter 17 

Neural networks, fuzzy logic, genetic algorithms, 
learning systems, intelligent systems 

17.1 Introduction 

This chapter describes a selection of what are sometimes referred to as AI techniques 
(in fact these methods are, in general, empirically/numerically based rather than being 
analytically/theoretically based like the bulk of conventional control theory). 

Neural networks are sets of interconnected artificial neurons that, very simplis- 
tically, imitate some of the logical functioning of the brain. After training, they can 
represent any algebraic non-linearity. They have to be trained by being presented with 
sufficient examples of the input-output behaviour that is desired, so to a large extent 
they can only represent existing data-generating phenomena by empirical equivalents. 

Fuzzy logic emulates the reliable but approximate reasoning of humans, who, 
it is said, distinguish only six or seven different levels of any variable during deci- 
sion making. Fuzzy logic algorithms can represent this style of reasoning by easily 
understood curves that are ideal for implementing those many control systems that 
are based on 'having a feel' or on 'rules of thumb' rather than on equations. 

Genetic algorithms and genetic programming are powerful evolutionary search 
methods that can search for structures as well as numerical parameters. These qual- 
ities allow the methods to synthesise solutions to a wide variety of problems. The 
approaches rely heavily on imitating the methods of animal/human reproduction fol- 
lowed by natural selection. Because the methods can search amongst many alternative 
structures, they can also be regarded as design or synthesis methods. 

Learning systems aim to emulate the human learning-by-experience mechanism 
so that a system can potentially learn to perform a task with increasing efficiency 
over time using an iterative algorithm. 

Intelligent machines and machine intelligence offer future prospects for creating 
systems with ever increasing autonomy and reasoning ability. 
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17.2 Artificial neural networks (ANN) 

17.2.1 Motivation 

From a control  point  o f  v i ew a neural ne twork  can be regarded pr incipal ly  as a non- 

l inear input -ou tpu t  black box  that can emulate  a process,  a controller,  a state es t imator  

or a classif ier  (Figures  17.1 and 17.2). Neura l  nets contain coeff icients  cal led 'we igh t s '  

(Figure 17.3). They  need  to be taught by being presented with numerica l  examples  

(that represent  the desired behaviour)  whi le  the weights  are modi f ied  by  a t raining 

a lgor i thm until the neural net  per forms as c losely to the examples  as possible.  

Figure 17.1 

• actual 
mechanism 

• trained ANN 

~, output 

• ANN output 

Basic abilities of  neural nets: after being trained with a sufficient 
number of  accurate examples, they can emulate any non-dynamic 
non-linear mechanism 

objects to be classified 

OA I -1AO0 classifier (. 0 0 0  

A A  

[] 

Figure 17.2 Basic abilities of  neural nets: after being trained with a sufficient 
number of  accurate examples, they can act as classifiers 

Figure 17.3 

u {w} • 

A neural network has a memory {w} of 'weights' that 
are learned during training. 

A neural network can be a process model, an inverse model, 
a controller, an estimator, a classifier or a filter. 

Basic abilities of  neural nets: the choice of  weights w determines the 
function that is emulated 
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Xl 

x2 

output 

inputs 

Figure 17.4 Architecture of  a typical neuron 

17.2.2 A basic building b l o c k -  the neuron 

A neural network is made by interconnecting a number o f  neurons (referred to equiv- 
alently as perceptrons, nodes or processing elements). Figure 17.4 shows a single 
neuron. It receives n inputs xi, each x input being multiplied by a weight wi. The 
neuron sums the weighted inputs, adds in a bias term b and then processes the sum 
through a function f to produce a scalar output y, given by the equation 

y = f XiR) i + b (17.1) 

The function f is the choice of  the user but the characteristics of  the sigmoid function 

1 
f ( x )  - (17.2) 

1 + e  - x  

make it the most widely applied for general emulation purposes. 
Training of  the neuron implies fixing numerical values for the weights w and the 

bias b so that the neuron behaves in a desired way. 

17.2.3 Simple properties o f  a neuron demonstrated in the two 
dimensional real plane 

For this illustration we set n = 2 and f = 1. Now, if we set y = 0, the equation of  a 
straight line results as 

wl b 
x2 = - - - x l  - - -  (17.3) 

W2 W2 

shown in Figures 17.5 and 17.6 for two different values ofb .  
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Figure 17.5 Realisation o f  x 1 AND X 2 

Figure 17. 6 

X 2 ' 

© 

Realisation o f  x 1 OR x2 

It is clear from the figures that the single neuron divides the plane into two 
regions and can work like an AND or an OR gate, according to the value given to the 
bias term b. It is also clear, Figure 17.7, that no single line can separate the points 
( - 1 , - 1 ) ,  (1, 1) from the points (1, - 1 ) ,  ( - 1 ,  1) as is required by the exclusive OR 
(XOR) function. 

One solution for mechanising the XOR function might be to use two neurons to 
generate two separating lines, and then to feed the output o f  the two neurons into a 
third combining neuron to form a region. This leads to the idea that more than one 
layer o f  neurons will be needed to allow wider classes of  functions to be emulated. 
We shall return to the topic of  multilayer networks shortly but first we consider the 
case of  a single neuron with n inputs. 
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x 2 

1 0 

(•)----•x 1 

1 

Figure 17. 7 No single line separates the points to realise the XOR function 

Propert ies  of  a single neuron with n inputs 

A neuron with n inputs describes a hyperplane that separates JK n into two disjoint 
regions, say A and B. The plane with normal v 6 R n has the equation 

(x, v) = b 

and this plane is offset by the distance b from the parallel plane 

(x,v) = 0 

that passes through the origin. 
A neuron with weights w 6 ll~ n and bias b E ]~ assigns any x c l~ n to region A 

or B using the rule: 

(x,w) > b =~ x e A  

(x,w) < b ~ x c B 

If  the convex hulls of  the sets A and B are disjoint then some hyperplane generated 
by the neuron can give perfect separation of  the points into their correct categories. 

I f  the convex hulls o f  the sets A and B intersect, then no hyperplane can separate 
the points perfectly and the best one can do is to choose the plane that misclassifies 
the least number o f  points. 

17.2.4 Multilayer networks 

Three layers o f  interconnected neurons are said to be sufficient to emulate any desired 
non-dynamic function. The most widely used neural network is perhaps the so-called 
multilayer perceptron (MLP) (Figure 17.8). An MLP usually has a three-layer archi- 
tecture with input, hidden and output layers. The number o f  neurons in each layer 
and the types of  functions embedded in each neuron are chosen by the designer of  
the network to match the application. 
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input layer 

inputs 

hidden layer output layer 

outputs 

normal data flow 

Figure 17.8 A multilayer neural network containing six neurons 

17.2.5 Neural network training 

Neural network training is the activity of fixing the weights w and the bias 
terms b throughout the network until the behaviour obtained achieves some given 
performance objective. The most used training algorithm is back-propagation. 
This works, in principle, as follows. Training examples in the form of input- 
output data sets (x, y) are presented to the neural network whose output esti- 
mates y are recorded. After presentations of k such data sets, we shall be 
in possession of the information ( xJ , yJ , yJ , j  = 1 . . . . .  k) and can form the 
error sum 

j = ~ - ~ ( y j  _ ~j)2 (17.4) 

whose minimisation will be the training aim. 
Where the neural network has only one layer, back-propagation consists only of 

adjusting each weight according to the algorithm 

OJ 
Awi = AJ  (17.5) 

Owi 

where the partial derivative will only exist if the function f in each neuron is itself 
differentiable, such as is the case when f is the sigmodial function. 

In multilayered networks, the same principle applies with eqn. 17.5 now having 
the characteristic that adjustments to weights in early layers can be found only once 
the later layer corrections have been calculated; hence the name back-propagation. 

In practice, the training of a large neural net on industrial data needs to follow 
a procedure such as the following. The available input data set Q is divided into 
three subsets, say A, B, C. The network is trained to fit the training set A, with 
periodic checks to determine the goodness of fit of  the partially trained network 
against verification data set B. The idea of this procedure is that training can be 
continued too long ('overtraining') such that the network 'learns' the data set A, 
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error E 
- - ~ "  / against training set A 

\ against validation set B 

c u r s  after this point 

number of training iterations 

Figure 17.9 Illustrating the phenomenon of overtraining 

noise and all, in great detail and no longer captures the underlying function so well 
as in the earlier stages of learning. By using the set B, the point where overtraining 
is imminent can be detected, the training stops and the performance against unseen 
data C can be checked (Figure 17.9). 

(The problem of overtaining, or overfitting, is not confined to neural net appli- 
cations and occurs whenever high order models are fitted to noisy or batch-to-batch 
varying data from a process of lower order. However, because neural nets tend to 
be of high algebraic order (a large number of weights to be trained) the overtraining 
problem is more severe than in classical modelling using, for instance, differential 
equations.) 

17.2. 6 Neural network architectures to represent dynamic processes 

All the neural networks we have discussed so far have been non-dynamic. That is, 
input information is immediately processed and appears without storage or delay at the 
output. In contrast a dynamic process has internal storage and a transient response. 
To see this, look at what happens to a dynamic system that receives a step input 
(Figure 17.10). Although the system receives a constant input of unit magnitude, the 
corresponding output, as shown in the figure, depends on the time. This feature makes 
neural network training more difficult than simply choosing weights to represent a 
time-invariant relationship. 

Three ways to make neural networks dynamic 

(1) Make the network recursive (Figure 17.11). From the figure, 

(1 + Pz-1)y(z) = Pu(z) 

y(z)/u(z) = P/(1 + Pz -1) = Pz / (P  + z) 

(2) Provide the system with delayed inputs alongside normal inputs yielding 
(Figure 17.12) 

y(z)/u(z) = P(z + 1)/z 
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Figure 17.10 

input 

output 

time 

A neural net with some sort o f  dynamic feature is clearly needed to 
learn this sort o f  input-output behaviour (in a normal non-dynamic 
net, the same input will always produce the same output) 

Figure 17.11 

~(z) +o I P 

l+ [delay,z-' 

y(~) 

The configuration has the first order dynamic equation 

y(z)/u(z) = Pz/(P+z) 

which has a first order dynamic 

Neural element P, made dynamic by feedback (recursive network) 

Figure 17.12 

- -  p 

y (z) 

This configuration has the first order dynamic equation 

y (z)/u (z) = P(z + 1)/z 

Neural element made dynamic by delayed inputs alongside normal 
inputs 
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integrator 

This configuration has the first order dynamic equation 

y (z) = z-lPu(z) 
y(z)/u(z) P/z 

Neural element made dynamic by connection of a separate integrator 

(3) Add an integrator to the network yielding (Figure 17.13) 

y(z)/u(z) ---- P/Z 

The simple derivations for networks 2 and 3 are similar to that shown for (1) above 
and are omitted. 

Most important industrial processes are non-linear and dynamic. If  the dynam- 
ics are modelled by a conventional network and the non-linear part by a neural 
net, excellent results can often be obtained. However, in such a configura- 
tion, network training can be difficult since differentiation of the industrial data, 
with loss of information, may be required if back-propagation approaches are to 
be used. 

The ease of application of neural nets and the speed with which tolerable results 
are delivered has caused many users to neglect to study the problem properly and 
to neglect a careful pre-treatment of  the data. The two omissions combined can 
lead to quick and cheap empirical solutions that will be expensive in the longer 
term. A very successful solution to this problem of excessive empiricism is to 
embed small scale neural nets within a conventional model of the known dynam- 
ics of a process to obtain a state variable structure as shown in Figure 17.14. 
Such a structure is both mathematically sound as well as transparent (rather than 
black-box). 

17. 2.7 Using neural net based self-organising maps 
for  data-reduction and clustering 

Self-organising maps (SOMs), particularly using the Kohonen approach, find appli- 
cation in clustering high dimensional data by unsupervised mapping onto a space of 
reduced dimension. Typically, several hundred input 'patterns' will be input to the 
SOM which will self-learn a small number of feature patterns at the centre of  the 
classifying clusters. 

A SOM, used in this way, can be regarded loosely as a neural-net based non-linear 
equivalent of a principal components analyser (PCA). 
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Figure 17.14 How neural nets can be embedded within known dynamics to produce 
a transparent and mathematically soundstate estimator (the example 
is from a large fermentation process) 

17.2.8 Upcoming rivals to neural networks? - support vector machines 
(SVMs) and adaptive logic networks (ALNs) 

Support vector machines (Sch61kopfetal., 1998, 1999; Cristianini and Shawe-Taylor, 
2000) work by mapping data into high dimensional feature space and in that space, 
linear functions are fitted to the features. 

Adaptive logic networks use a growing self-organising tree of piecemeal linear 
functions or hyperplanes. 

The proponents of  these two approaches claim they are faster and more transparent 
than neural networks, that they have global minima and that they also allow the 
inclusion of domain knowledge during the modelling process. Under some conditions, 
ALNs can be reversed so that the output becomes the input. This ability to invert a 
learned function can have great utility in allowing analysis to be turned into synthesis. 
ALNs are trained in a similar way to neural nets but they can also be trained by 
reinforcement learning in which only rough fuzzy feedback such as 'good'  or 'poor '  
is provided by the supervisor. 

17.2.9 Neural nets - summary 

• Very simple idea of interconnected neurons that can emulate any function for 
which numerical examples are available. 

• Some theoretical support from Weierstrass' theorem - any continuous function 
may be approximated arbitrarily closely by a polynomial. 
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• An ANN is a ready made modular polynomial with an effective back-propagation 
method of  parameter fitting. 

• Not so good as a well custom-constructed non-linear dynamic model but the effort 
required is very much less. 

17.3 Fuzzy set theory and fuzzy logic 

17.3.1 Introduct ion and  motivat ion 

To the extent that mathematics is exact it does not apply to the real world," to the extent that it 
applies to the real worm it is not exact 

Precision is not truth 

Precision and relevance can become almost totally mutually exclusive characteristics 

These quotations (from Einstein, Matisse and Zadeh) confirm our experiences that 
everyday situations are in general too imprecise to be dealt with satisfactorily by 
mathematical tools. 

These three quotations appear to argue in favour of  imprecise but reliable human 
reasoning and action taking. Our everyday observation is that small children rapidly 
learn to catch a ball, make a swing go really high, ride a cycle or roller skate, all based 
on 'acquiring a feel'.  The attraction of  controllers that might acquire a feel, instead 
of  requiring to be based around a complex quantitative dynamic model, is obvious; 
controllers based on fuzzy logic go some way towards encoding the human ability to 
'acquire a feel'.  

Normal set theory and normal logic are characterised by formalised precision. For 
instance, once set A has been defined then every element in the universe of  discourse 
belongs either to A or to the complement of  A (Figure 17.15). Similarly, every 
statement in logic produces a statement of  either ' t rue '  or ' false '  with no possibility 
of  'maybe ' .  

~ t fierce 

A' 

the crisp set of all fierce dogs 

the fuzzy set of all fierce dogs 

somewh~ 

equivalent grey scale 

Figure 17.15 Crisp and fuzzy sets 
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normal logic 

I true [ fair ,,,J 

fuzzy logic 

Figure 17.16 Normal and fuzzy logic 

In contrast, fuzzy set theory is characterised by imprecision, and since human 
reasoning is based on approximations, here lies the attraction of fuzzy sets. We can, 
for instance, define the set of all 'fierce dogs' or the 'set of  all bad restaurants' it 
being understood that there will be different degrees of  'fierceness' and 'badness', 
respectively. 

The idea of a stepped grey-scale (Figure 17.16) comes to my mind to quantify 
membership of a fuzzy set. Considering again the set of  all fierce dogs, normal set 
theory would have a crisp 0-1 classification into fierce and non-fierce. Fuzzy set theory 
would have some well-defined transition from most fierce to not fierce, leading to the 
concept of a broad fuzzy set boundary, and the idea of degrees of set membership. 

It is clear that a fuzzy set can contain more useful knowledge for everyday decision 
making than can an equivalent crisp set. The attraction of fuzzy logic/fuzzy set theory 
is that it allows common sense encoding of different levels of intensity and it also 
allows for the outputting of different levels of  activity, leading straightaway to the 
idea of a fuzzy logic controller. 

In particular, fuzzy logic often allows the simple mechanisation of the control 
actions of  a human operator. Mamdami (1976) was the first to publish reports of  
fuzzy control of a model steam engine while the first successful applications of  fuzzy 
control in industry was to a cement kiln where operators look at many subjective 
quantities and then adjust a few process variables. Fuzzy logic proved ideal for codi- 
fying the operators' rather ill-defined but reliable control actions at the Danish plant 
of LA Schmidth (Holmblad and Ostergaard, 1982). 

A simple illustration of how a crude rule of thumb can be encoded 
to produce an easily implementable control algorithm 

Imagine a situation where a furnace has the rule of  thumb for control as follows: 

• If  the indicated temperature is LOW (90 °C or less) then set the fuel valve (FV) 
to 100. 

• I f  the indicated temperature is OK (near to 100 °C) then set the fuel valve (FV) to 
10 (this setting having been found to just offset the losses occurring at 100 °C). 

• I f  the indicated temperature is HIGH (110 °C or higher) then set the fuel valve 
(FV) to 2. (Let us agree that it is not allowable to shut off the fuel completely and 
that this is the minimum allowable setting.) 
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FV = 100 
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observed furnace temperature, degrees C 

Figure 17.17 Actions required." solid line - rule of thumb; dotted line -fuzzy logic 
interpolating curve 

Our chosen fuzzy control algorithm simply interpolates linearly in the above rule o f  
thumb (see Figure 17.17) to give the rule 

0 _< 90 ° :=~ FV = 100 

90 ° < 0 < 100 ° =~ 

100 ° < 0 _< 110 ° :=~ 

0 > 110 ° ==~ F V = 2  

(0 - 90) 
F V =  1 0 0 - 9 0 - -  

10 

F V =  1 0 - 8 ( 0 - 1 0 0 )  
10 

In use, the algorithm would be run every T seconds, with T being chosen to suit the 
dynamics. The value of  FV would be held constant between calculations. 

Fuzzy control can deal with very complex and ill-defined problems 
that defy mathematical analysis 

In a collaborative project between University of  Westminster and a UK cement man- 
ufacturer, there were around 40 measured or observed variables as inputs to a fuzzy 
control algorithm but only some three or four variables to be controlled. Fuzzy logic 
techniques allow such problems to be visualised and driven graphically so that the 
many interacting and even contradictory laws can be weighted (based on operators' 
advice) and then combined to form a number o f  required action shapes. The actions 
to be implemented at each time step are then found, typically, by finding the centres 
of  areas o f  those required action shapes. 

17.3.2 Some characteristics o f  fuzzy logic 

• Imprecise rules o f  thumb may easily be encoded. 
• Simple structures that parallel human reasoning result. 
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• The overall operation of a fuzzy logic control can be visualised graphically. 
• Using fuzzy logic it is easy and practicable to engineer custom solutions to prac- 

tical problems using solutions that can successfully encode and then interpolate 
in operator wisdom and operator feel. 

• Fuzzy logic allows mathematics to change its character to emulate the reliable but 
approximate decision-making methods that humans have evolved so successfully 
over the centuries. 

Disadvantages of control based on fuzzy logic 

• Many concepts/tools of conventional control are not easily available (such as 
frequency response, stability margin, etc). 

• Because of the above, fuzzy control solutions have to be checked out empirically 
over a range of scenarios, rather than being guaranteed mathematically. 

17.3.3 References: early pioneering work 

HOLMBLAD, L. P. and OSTERGAARD, J. J.: 'Control of a cement kiln by fuzzy 
logic', in M. M. GUPTA and E. SANCHEZ (Eds): 'Fuzzy information and deci- 
sion processes' (North Holland, Amsterdam, 1982), pp. 389-399. 
This paper surveys the application offuzzy logic by EL. Smidth & Co. (FLS) for 
control of rotary cement kilns. The presentation is given in retrospect, starting 
in 1974 when FLS heard about fuzzy logic for the first time. The most important 
milestones are presented, with special emphasis on the role of fuzzy logic. 

MAMDAMI, E. H.: 'Applications of fuzzy algorithms for control of simple dynamic 
plant', Proc. IEEE., 1976, 121, pp. 1585-1588. 

ZADEH, L. A.: 'A rationale for fuzzy control,' J. Dynamic Systems, Measurement 
and Control, 1972, 94, Series G (3-4). 

17.4 Genetic algorithms 

17.4.1 Basic ideas 

Populations of living organisms have powerful abilities to evolve and to adapt, guided 
by actual experiences (survival of the most fit for purpose). Genetic algorithms imitate 
natural evolution and natural selection to find solutions to a wide variety of search 
problems. Natural evolution has a number of features that can possibly be transferred 
to artificial genetic algorithms. These are: 

(1) A blueprint t~or a new organism, being a chromosome encoding future 
characterisation as a string of symbols. 

(2) (In many organisms) a sexual generation mechanism in which two chromo- 
somes from the two parents line up and make a linear exchange of genes from 
a randomly selected point onward. This mechanism is called crossover. 

(3) A (possibly infrequent but important) mutation mechanism that ensures that 
entirely new regions of the search space are occasionally accessed. 
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A survival o f  the 'most  fit for purpose'  strategy. In nature, this strategy is 
administered by the ability of  an organism to survive and even thrive in a com- 
petitive environment, at least to a point where it has parented its own offspring. 

17.4.2 Artificial genetic algorithms 

(1) Every potential solution to a search problem to be solved by a GA approach 
must somehow be encoded as a string of  (say) binary symbols in such a way 
that all allowable strings are possible solutions (Figure 17.18). 

(2) Crossover and mutation strategies (Figure 17.19) exist, imitating the natural 
mechanisms described above. 

(3) A fitness function is used to linearly order any set of  possible candidate 
solutions. 

The problem to be solved can be considered amongst the class of  hill-climbing prob- 
lems where visualisation is in the form of  a landscape in which we seek the highest 

non-smooth 
problem 

TASK: 
optimisation, scheduling, identification, synthesis. 

ENCODING is OUTPUT: 
non-trivial 'optimum' solutions, 

encoded set ] f ' - " ~  rules, structures, parameters, designs. 
of potential ~ 
solutions 

Figure l7.18 Genetic algorithms (GAs) are general purpose 
algorithms 
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Figure 17.19 Illustration of the crossover and mutation mechanisms 
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point, equivalent to the point of  highest elevation, as measured by the fitness function. 
In hill-climbing, smooth landscapes with single (i.e. unimodal) maxima are relatively 
easy to solve whereas noisy landscapes with multiple maxima confuse and delay the 
algorithm. 

All search methods progress more slowly when the problem is non-linear, non- 
smooth, noisy and with multiple maxima. However, the genetic algorithm, properly 
set up, has shown itself to be one of the most effective general search methods for 
such difficult problems. 

To understand the particular effectiveness of the genetic algorithm approach, 
consider a mountainous landscape that represents the search problem with the task 
being to find the point of  highest elevation. The population of candidate solutions 
is initially randomly and more or less uniformly distributed across the search space. 
However, as successive generations evolve, the 'net '  of  candidate solutions becomes 
ever more closely meshed near to possible solutions and correspondingly sparse far 
away. Thus the search is parallel with statistically increasing probability of search near 
to likely solutions and although fragmented summits (spiky noise) necessarily delay 
any method of solution, the genetic algorithm's lack of direct reliance on seeking 
directions (which are badly affected by local noise) puts it at an advantage. 

Thus, genetic algorithms are able to concentrate most of  their attention on the 
most promising parts of  the problem space. 

17.4.3 Genetic algorithms as design tools 

In considering how a set of solution strings develops towards the required solution, 
it becomes evident that the spatial location of information within the chromosome 
may be important. Consider using a genetic algorithm to choose the architecture and 
train the weights of a neural network to model a dynamic batch process for which 
input-output data are available. In such a case, one segment of  the chromosome 
could represent structure or type of architecture, another segment, numbers of  layers 
and types of  embedded functions, while the final layer could represent the numerical 
parameters that need to be estimated (see Figure 17.20). 

It is clear that GAs with their ability to choose between alternative structures and, 
as it has been shown by Koza et al. (1999), their ability to synthesise novel structures 
and novel solutions, make them very powerful tools. 

Figure 17.20 

How a chromosome can be set up to encode 
(a) qualitative structural information (type of architecture) 
(b) quantitative structural information (numbers of nodes/layers, etc.) 
(c) numerical values of parameters for instance for a neural network 
model of a process 

Because of  an ability to search amongst widely differing disparate 
structures, a GA can be considered to be a design and synthesis tool 
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q allocate fitness values 
ation-relevant parameters 

decode chromosome evalute fitness 

GA domain application domain 

How the GA is linked to the problem through the fitness function 

17.4.4 GA summary 

Genetic algorithms (GAs) are general purpose optimisation algorithms working, 
in overview, as shown in Figure 17.21. 
They are based loosely on certain concepts of  biological evolution (genes, chro- 
mosomes, mutations, generations, [un]natural selection, and survival of the most 
fit for purpose). 

The main steps in classical GA 

• Encode the problem so that the solution sought is in the form of a binary string 
0110110010... called a chromosome. 

• Generate a totally random set of  (say 100) chromosomes of the right length to be 
a solution. 

• Evaluate the fitness (a single positive number) of  each chromosome. 
• Probabilistically, select the most fit chromosomes to be parents for the next 

generation and produce a new generation from these parents by the crossover 
mechanism. 

• Continue the cycle of generations until a satisfactory solution has been obtained 
as measured by the fitness value. 

GA advantages 

• The entire space is searched in parallel, avoiding the solution terminating in local 
minima. 

• GAs are less prone to noise problems than methods that need to evaluate 
derivatives. 

• No knowledge of the problem is needed except for calculation of fitness values. 

GA disadvantages 

• GA is just a general idea and many difficult application-dependent tasks have to 
be undertaken (particularly encoding and definition of fitness function, etc.). 
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• For all but demonstration problems, the computer power/time required to produce 
a realistic solution may be considerable. 

• Much of the GA practitioner's art and skill lies in getting an algorithm to converge 
when faced with a large problem. Such strategies as incremental evolution (in 
which coarse approximations are successively produced and then refined) are 
subjects of current research (Kalganova, 2000). 

• GAs have a poor reputation for handling constraints. 

17.4.5 References 

BANZHAF, W. et al. (Eds): 'Genetic programming: an introduction' (Morgan 
Kaufmann, Heidelburg, Dpunht Verlag, 1998). 

KALGANOVA, T.: 'Bidirectional incremental evolution in evolvable hardware'. Pro- 
ceedings of the second NASA/DoD Workshop on Evolvable Hardware, Palo Alto, 
California (IEEE Computer Society, Piscataway, NJ, 2000). 

KOZA, J. R. et al.: 'Automatic synthesis of both the topology and parameters for a 
robust controller for a non-minimal phase plant and a three-lag plant by means of 
genetic programming'. Proceedings of IEEE conference on Decision and Control, 
Chicago, IL, 1999, pp. 5292-5300. 

REEVES, C. R.: 'Genetic algorithms: a guide to GA theory' (Kluwer, Dordrecht, 
2002). 

17.4.6 Rivals to GAs? Autonomous agents and swarms 

People are moved in a large city by a mixture of methods ranging from centrally 
planned underground trains running at scheduled times on fixed routes to a shifting 
mass of taxis operating largely autonomously. Agents and swarms have some simi- 
larity to these taxis: having been set going, they may together solve a very complex 
problem by a mixture of rivalry and co-operation. 

Some specimen references are: 

BONABEAU et al.: 'Swarm intelligence: from natural to artificial systems' (Santa 
Fe Institute of Studies on the Sciences of Complexity, Oxford University Press, 
New York, 1999). 

FERBER, J.: 'Multi-agent systems: an introduction to distributed artificial intelli- 
gence' (Addison-Wesley, Harlow, 1999). 

17.5 Learning systems (systems that learn) with or without 
supervision 

17.5.1 Basic ideas 

A machine that can learn by trial and error and that can refine its behaviour over 
time has very obvious attractions. Further, one could reasonably expect that the ever 
increasing availability of increased computer power, speed and memory could enable 
such technologies to be developed and put into application. 
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Learning in its general sense involves: 

1. A learner 
2. Something to be learned 
3. Examples or selections from what is to be learned displayed to the learner 
5. Trial solutions or hypothesis provided by the learner 
6. (Possibly) a teacher or a cost function to give feedback to the learner. 

17.5.2 Learning versus adaptivity 

Adaptivity implies that in response to a change in (say) environment, a system will 
modify its behaviour always in the same way no matter how many times the operation 
is performed. However, a learning system, in contrast, faced with a task similar to 
one encountered previously, can be expected to respond with increasing efficiency - 
at least until some asymptotic limit to learning has been reached. 

17.5.3 Structural characteristics of  an abstract learning system 

(a) An initially empty knowledge space that will be populated by knowledge 
functions that have been accumulated from earlier recorded experiences. The 
knowledge space with its current set of knowledge functions will be called the 
knowledge base. 

(b) A knowledge interpreter and interpolator whose aim is to build the best possible 
knowledge base with the minimum of experimentation. It is the task of this 
device to choose control strategies that when implemented will produce data 
rich in information to help fill the knowledge base appropriately. 

(c) An objective function that defines the purpose of the whole exercise. 
Figure 17.22 indicates the concept. In practice, the learning involved in finding 
a good control system for a new 'unknown' process, such as occurs in the manu- 
facture of a new pharmaceutical product, requires a large number of interacting 
decisions to be made as shown in Figure 17.23. 

Although the procedures used will in broad principle follow the outline shown 
in Figure 17.22, many of the decisions to be made rely on the inherited wisdom of 
experts and the sequence of events is still heavily supervised by human experts as 
shown diagrammatically in Figure 17.24 with the emphasis being initially on finding 

t knowledge • interpreter l• 
objective 
function 

Figure 17.22 Learning control concepts - the structure of an abstract system 
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Figure 17.23 

Figure 17.24 
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The control strategy for a biprocess must fix initial conditions for 
physico-chemical variables a-e and for bioprocess variable f a n d  
stipulate trajectories A-F to be followed during the batch by these 
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A: model development loop, B: performance optimisation loop 

Rapid control development for a new batch process 

a process model and then changing to a concentration on performance optimisation 
(Figure 17.25). 

17.6 Intelligent systems 

17. 6.1 The properties that an intelligent system ought to possess 

The qualities and properties that an intelligent system ought to possess (based on 
presentations at recent IFAC meetings) are as follows. An intelligent control system, 
in its most ambitious form, should possess autonomy in terms of: 

• self-learning 
• self-reconfigurability 
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Figure 17.25 Rapid control development for a new batch process." expected 
progression 

Figure 17.26 
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NIST-RCS system." an architecture for intelligent system design 
(Albus, 1997) 

• reasoning under uncertainty 
• planning 
• decision making 
• failure detection 
• setting control goals (not only attaining them). 

It is clear that some current systems do indeed possess several of the quoted properties. 
However, it has to be admitted that the state of development of intelligent control 

systems as measured against the list is still quite modest - perhaps not surprisingly 
given the ambition built into the list. 

More ambitious still is the definition 'Systems that can deliberate about the past 
and generate plans and strategies for the future'. Measured against this definition, 
achievements so far appear pedestrian indeed. However, such a scenario-generating 
architecture to meet that requirement has been proposed (by Albus, 1997) along the 
lines of Figure 17.26. 
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If and when a computer architecture such as the one shown becomes generally 
available, we shall have an ideal platform to help us to rapid, reliable and transparent 
implementation of a wide range of intelligent control systems. 

17. 6. 2 Se lec ted  references  

ALBUS, J. A.: 'The NIST real-time control system (RCS): an approach to intelligent 
systems research', special issue of the Journal o f  Experimental and Theoretical 
Artificial Intelligence, 1997, 9, pp. 157-174. 

ALBUS, J. S. and MEYSTEL, A. M.: 'A reference model architecture for 
design and implementation of intelligent control in large and complex sys- 
tems', International Journal o f  Intelligent Control and Systems, 1996, 1(1), 
pp. 15-30. 

17A The idea of a probing controller 

Akesson and Hagander (2000) have proposed a so-called probing controller that 
uses a generic idea for tracking just below invisible varying and unknown con- 
straints that occur in a batch process. The idea is to make probing pulses in 
the glucose feed rate and to monitor the responses which change as the con- 
straint is approached. By this method, it is possible to detect and avoid a 
characteristic saturation linked to undesirable by-product formation. Figure 17.27 
shows how in e coli fermentations, the optimal carbon feed rate will run along 
invisible constraints. The probing controller finds these boundaries by puls- 
ing the feed rate as shown in Figure 17.28 and observing the nature of  the 
response. 

Figure17.27 

~lnle 

Carbon f eed  rate constraints in e coli based expression systems. 
The trajectory should be as close a possible to the three upper 
(invisible) constraints 
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Figure 17.28 How the nearness to the constraint can be inferred from the 
measured responses to the injected pulses 

The idea could be adapted to other processes where variable invisible constraints 
have to be approached as closely as possible. 

AKESSON, M. and HA GANDER, P.: "A simplified probing controller for glucose feeding 
in Escherichia coli cultivations '. Proceedings of the 1EEE Conference on Decision 
and Control, 2000, 5, pp. 4520-4525. 



Chapter 18 

Review - the development of control theory and 
the emergence of artificial intelligence (AI) 

techniques 

18.1 A rapid review of how control theory developed 

During the period of early industrial development, control was not identified as any- 
thing significant since the main preoccupations were with wider basic issues. For 
instance, the main problems in the early coal industry were with explosions, roof- 
falls, carbon monoxide poisoning and dust-borne diseases. Once those problems had 
been largely solved, control systems technology came into play, for instance in the 
design of remotely operated coal cutters. Present day coal mine managers are now 
preoccupied with logistics, reliability, information and maintenance. The evolution- 
ary pattern - mechanisation/automation and control/organisation and logistics - can 
be discerned in almost every industry (Figure 18.1). 

Thus, automatic control was scarcely needed until mechanisation had produced 
the devices and processes that needed to be controlled and in fact it was the 
requirements of telephony that drove Nyquist (1932), Bode (1945) and coworkers 

Figure 18.1 
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to develop their frequency response and feedback techniques that were to have such 
wide applicability much later. 

However an early prophet of things to come wrote 'In this age characterised by 
huge resources of mechanical and electrical power, these agencies have in many fields 
almost completely replaced human muscular power. In a similar way the functions 
of human operators are being taken over by mechanisms that automatically control 
the performance of machines and processes.' So wrote H. L. Hazen in a far-sighted 
paper in 1934. Many of the concepts that Hazen and his contemporaries realised 
to be possible were slow to materialise because of the absence of reliable devices 
for computation and information transmission. It required the technical stimulus of 
World War II, and a long period of development before Hazen's ideas began to be 
applied in depth to the more advanced end of the industrial and business spectrum 
in the 1960s and 1970s. The slow growth was due to the high cost, unreliability and 
difficulties of application of early computers. 

Since all usable systems have to be stable, stability theory is involved implicitly 
or explicitly in every control application and arguably this is the strongest thread that 
needs to extend to fully underpin the newer areas where IT, computing and control 
theory overlap to unify the wider control topic. Early designers of mechanical devices 
had to ensure stable operation through ingenious mechanical means rather then using 
control design approaches, which had not yet been invented. For instance, James 
Watt designed his governor for steam engines in 1788 (Figure 18.2). It uses a form 
of feedback via a velocity dependent linkage. In practice, the Watt governors often 
gave poor speed control and allowed oscillatory behaviour. Maxwell (1868) derived 
the differential equations describing the govemed system, linearised the equations 
about an equilibrium point, and showed that the system would be stable if the roots 
of the characteristic equation all had negative real parts. He then converted his con- 
clusions into recommendations to add viscous friction to damp the governors. These 
early examples already illustrate the still continuing trend whereby intelligence is 
transferred from a designer's head into a mechanism, a controller or a data base to 
give increased machine autonomy (Figure 18.3). 

steam supply I ~ , ~ r c ~ i V ¢  ] steam to engine 

Figure 18.2 James Watt's centrifugal governor of 1788 (when the collar lifts, the 
valve reduces the supply of steam to the engine-feedback control) 



Review 251 

mechanisation 

V 

m~hanism I ,,] 

control 

1 
I 
I 

designed 
eon~'ol system 

mechanism 

intelligent control 

i 

,, 
I 

~ c~ntrot syst~ 

t .~  mcehanism 

Figure 18.3 Phases of development 

During World War II and after, new designs of aircraft, guns and missiles needed 
new types of control systems that stretched existing knowledge resulting in new 
research and new powerful techniques. 

In the period 1945-1965 these so-called classical techniques, with heavy emphasis 
on graphical visualisation in the frequency domain and with mathematical underpin- 
ning by the theory of functions of a complex variable, were applied with spectacular 
success to industrial problems, particularly those in the oil, gas, metals and chemical 
industries. Most of the algorithms passed without difficulty into the computer age as 
discrete-time versions where they still keep most of the wheels of industry turning or 
stationary, as required. 

In the period 1960-1990, matrix based multivariable theory, with its theoretical 
foundation being linear algebra and operator theory, developed in earnest and there 
resulted the beautiful core of linear control theory, Figure 18.4. That figure illustrates 
the mathematical coherence of the whole control subject. It is that coherence that 
guarantees the availability of transformations between different representations and 
domains so that, for instance, the structure, transient and frequency responses and 
stability characteristics of any given system can be looked at and manipulated in 
whichever domain is most convenient. 

However, the mathematical attractiveness of control theory did not guarantee its 
universal commercial success. 

The drivers for the development of control theory had come from the predomi- 
nantly academic developers themselves with little pull from the industrial managers 
whose applications stood to benefit. Not surprisingly, the result was a lot of theory 
looking for applications and a certain amount of resulting disillusionment all round. 
Quite a few problems were caused by naive assumptions, such as the following. 

Accurate unchanging mathematical models of complex industrial processes could 
be produced at a non-exorbitant cost and that 'clean' mathematics could encode 
the messy realities of the world of work. 
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Supporting mathematics 

Differential equation theory 
Complex variable theory 
Linear algebra 
Functional analysis and operator theory 

Activities and characteristics 
• Design approaches 
* Stability tests 
• Modelling methods 
• Optimisation approaches 
• Robustness 
• Adaptation 

Figure 18.4 The coherence of control theory 

The often ill-defined economic aims of a complex plant could reasonably be 
expressed as a single scalar cost function, thus allowing meaningful optimisation 
studies to take place. 

The failure in the real world of many of the highly rigorous mathematical optimisation 
techniques resulted in two parallel developments: 

(1) 

(2) 

The development of robust control methods, still mathematically deep, but 
now attempting to quantify and take into account some of the uncertainties 
and modelling errors that had caused the failures above. 
A return to anthropomorphism with a realisation that imitating nature might 
have a lot to offer. This theme (imitating nature) combined with the ready avail- 
ability of computing power and data-collection techniques has resulted in the 
appearance of a disparate set of so-called AI techniques. Table 18.1 shows a 
classification of how some of these AI techniques relate to the earlier, more 
mathematical, expectations of the control world. 

18.2 The emergence of A1 techniques 

Table 18.1 indicates how 1970s expectations of rigorous future algorithms largely 
turned into 1990s AI realities. To give a little structure to that table, it can be com- 
mented that expert systems and fuzzy logic decision making both depend on empirical 
stored rules, whereas neural networks and genetic algorithms both depend on inter- 
active numerical intensive training/searching to obtain agreement of models with 
recorded observations. 

Other control-related AI techniques, additional to those shown in the figure, have 
been developed, for instance for pattern recognition, data mining and data clustering. 
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Table 18.1 HowAl-based techniques are taking over from mathematical techniques 

1970s expectation - is (2002) being performed by - based loosely on 

Centralised supervisory Expert systems 
algorithm 

Precise decision making 
Mathematical models based 

on physical derivation 
Large scale optimisation 

techniques 
In general 
Mathematical solutions of all Powerful but non-rigorous 

important problems empirical methods 

Fuzzy logic decision making 
Neural networks trained 

empirically to fit observations 
Genetic algorithms 

Human memory 
Human inference 
Human decision-making 
Animal brain operation 

Darwinian evolution of 
species 

Rather weak imitations of 
how nature does things 

18.3 Control applications are now embedded within 
an IT infrastructure 

Not only is control theory increasingly interacting with all the AI techniques listed 
above but, even more significantly, all control applications have necessarily become 
embedded within information technology in order to meet the requirements of Society. 
The phenomenal increase in cheaply available computer power and in information 
and data transmission and processing technologies has totally changed the context 
in which a control system has to operate. Most control systems now have to operate 
embedded within some IT structure forming part of  a large command, control and 
information network. 

18.4 Summary 

In summary, the most significant recent developments that have affected control 
theory are: 

• the advent of  AI techniques, being a disparate set of  rather empirical techniques 
that are not well linked by an underlying theory; 

• the embedding of almost every control activity into an information technology 
structure. 

18.5 How intelligent are AI (artificial intelligence) methods? 

What is the purpose of posing this recursive-looking question that is sure to be difficult 
to answer? The purpose here is to illustrate that there exists at present: 

• a set of  what have come to be loosely termed AI methods, that in general are useful, 
disparate, empirical, not very autonomous, weakly underpinned theoretically and 
rather mundane: 
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on-going research into intelligent machines that are increasingly autonomous, 
that soon will set their own targets and that offer to challenge higher level human 
thinking. 

18.6 What  is intelligent control? 

Intelligent control as typified by current research into intelligent machines might be 
considered part of that 'vanguard of innovative developments created to deal with 
complexity and uncertainty by the application of self-learning and the injection of 
autonomy'. 

Unfortunately for consistency, according to the above (believed to be the author's) 
definition, most of the techniques that are usually labelled AI techniques fail to qualify 
as intelligent control methods since they rarely inject significant autonomy into the 
systems where they are implemented. 



Chapter 19 

References and further reading 

19.1 Library books 

The control literature is concentrated, as far as the Dewey system is concerned, into 
the 629.8 category with particular entries being: 

629.8312 Control theory 
629.836 Non-linear and adaptive control 
629.895 Computer control 

Other entries of interest are: 

511.8 Mathematical models 
515.352 Ordinary differential equations 
515.353 Partial differential equations 
515.625 Difference equations 
515.64 Calculus of variations 
515.7 Functional analysis 

19.2 Other sources 

The contents list of the massive Congress Proceedings oflFAC, the International 
Federation of Automatic Control, published triennially since 1960, and the annual 
proceedings of the American Control Conference may be scanned as a guide to current 
and past research directions. 

Books, including out of print titles, can be discovered by scanning the British 
Library or Library of Congress data bases and papers can be found from a variety 
of on-line abstract data bases. I have found the EI-Compendex data base, accessible 
through the Athens portal, and the public domain 'Citeseer' site to be the most useful. 
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Many academic library services now offer full text access to a wide range of 
journals, such as the IEEE range, by access through any networked terminal on 
campus. 

The website of  the Control Virtual Library at: h ttp://www.cds.caltech.edu/extras/ 
Virtual_Library/Control_VL.html contains useful information. 

19.3 Mainstream control literature 

Two highly recommendable books are Glad and Jung (2000) and Trentelman et al. 
(2001). However both texts are advanced in that they require a prior knowledge of 
linear feedback theory and a certain mathematical sophistication. These prerequisites 
can be obtained, in part, from standard undergraduate texts. Mainstream control is now 
a mature topic and this is reflected in the literature for undergraduate courses which 
is dominated by a few large textbooks that are aimed largely at students preparing 
for examinations. Typically, these books (see below) are now (2003) in at least their 
fifth editions and each covers a wide range of topics including, usually, introductory 
material on modelling, optimisation and state estimation. 

D'Azzo andHoupis (1995) around 800 pages; began life in 1960 with 580 pages 
Dorf(2001) around 800 pages; began life in 1967 with 400 pages 
Franklin and Powell (2002) 850 pages, began life in the 1980s with around 600 

pages 
and in similar vein are 

Ogata (2002) 850 pages, began life in 1967 with 600 pages 
Kuo (2003) now in 8th edition 

A large selection of introductory books link their expositions to MAXLAB or other 
computer package solutions. This is a useful strategy and such books may be very 
attractive. However, ! decided not to include them in the following lists since they are 
so numerous and they tend to date rapidly in phase with the arrival of new versions 
of the software. 

19.4 Older mainstream control books 

Many older books have a great deal to offer, having been written during the heady 
days (one might say 'golden years') when the subject was being created. Amongst 
the books that I have been privileged to work from and that I would not be without 
are the following: 

Chestnut and Mayer (1959), Horowitz (1963), Newton, Gould and Kaiser (1957), 
Truxal (1955), Thaler and Brown (1953), Tou (1964), Zadeh and Desoer (1963) and 
from a little later, Brockett (1970) and Wonham (1985). Zadeh and Desoer is an 
indispensible book for anyone interested in a rigorous approach to control theory. 
Brockett is a superb book giving a simple yet advanced geometric view of systems 
behaviour. Wonham also gives a welcome geometric viewpoint. 
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More older books have been listed in the references for the reasons that they are 
still entirely relevant and that their coverage, approach and level of detail cannot 
be found in current books. For example: Balmer and Lewis (1970) which covers 
elementary material using a worked-examples approach. 

Somewhat harder are the twin books by Polak and Wong (1970) and Desoer 
(1970). Both are very brief. 

Harris (1961) and Maddock (1982) both take an elementary but comprehensive 
pole-zero view of systems dynamics. 

19.5 Methodologies for economic justification of 
investment in automation 

Please refer to Section 8.5 for recommendations. 

19.6 State estimation 

Two seminal papers, Kalman (1960) and Kalman and Bucy (1963), lay firm founda- 
tions for everything that has followed since. The mathematical background is covered 
by Ruymgaart and Soong (1985). Other suggested references are Grover-Brown and 
Hwang (1992), Lee (1964), Middleton and Goodwin (1990), Norgaard et al. (2000), 
Saridis (1995) and S6derstr6m (2002). 

19.7 Non-linear systems 

An important author in the field is Isidori (1995, 1999, 2001). Other suggestions 
are Banks (1988), Conte et al. (1999), Fradkov (2000), Henson and Seborg (1997), 
Marquez (2003), Sastry (1999) and Verhulst (1999). For more expository treatments, 
it can be quite useful to consult earlier books such as Gibson (1963), Graham and 
McRuer (1961), Minorsky (1947) and the two slim books by Aggarwal (1972) and 
Leigh (1983b). Flugge-Lotz (1953, 1958, 1968) is good on discontinuous control. 

Cartwright and Littlewood (1947) and Van derPol (1927) are of historical interest. 
In sliding mode control, a system is designed so as to follow one or other switching 

surfaces, potentially yielding consistent operation despite varying application condi- 
tions. See Misawa (2003), Perruquette and Barbot (2002), Spurgeon and Edwards 
(1998). 

19.8 Optimisation 

The literature on optimisation is very extensive. The bibliography lists two books 
that are concerned with inequalities, since a study of these is a prerequisite for 
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understanding certain approaches to optimisation. The references are Beckenbach 
and Bellman (1961 ) and Hardy, Littlewood and Polya (1967). 

There are useful early books on specific topics in optimisation; for instance, 
Hestenes (1966) on the calculus of variations, Pontryagin et al. (1964) on the 
maximum principle and Bellman (1957) on dynamic programming. 

Recommended general texts are Bryson (2002), Markus and Lee (1967) and 
Sage and White (1977). Grimble and Johnson (1988) is a very comprehensive 
two-volume set. 

Finally, I mention Pallu de la Barrikre (1967), still in print. This book, by making 
mathematical demands on the reader, may act as a motivator for those who need a 
concrete reason for studying further mathematics. 

19.9 Distributed parameter systems 

Books on partial differential equations, such as the classic by Sommerfeld (1949) and 
John (1975), naturally tend to emphasise idealised situations leading to parabolic, 
elliptic or hyperbolic classical equations with known analytic solutions. 

Readable literature on the modelling and control of less idealised distributed 
parameter systems is fairly rare. The best introductory reference is possibly Wang 
(1964). Other recommended references are Banks (1983), Jai and Pritchard (1988), 
and Omatu and Seinfeld (1989). 

19.10 Hp spaces and H ~  (robust) control 

Please refer to Section 16.9 for recommendations 
In addition, it will be worth becoming familiar with a different viewpoint based 

on Kharitonov's theorem (1979) and which is very straightforward in applications; 
process uncertainty is dealt with by defining parameters as intervals rather than by 
fixed numbers. A geometrically visualisable Hurwitz type test is then carried out on 
the edges of the hull representing all the possible Hurwitz polynomials. See Tan and 
Atherton (2000) for a useful summary. 

Also relevant is the technique of quantitative feedback theory (QFT) pioneered 
by Horowitz (1993). QFT is a frequency response technique that uses feedback to 
compensate the effects of unmeasurable process uncertainties or non-linearities. See 
also Yaniv (1999). 

Closely associated with robust control are the topics of sensitivity analysis, Saltelli 
et al. (2000) and algorithm fragility, Istepanian and Whidborne (2001). 

19.11 Neural networks and support vector methods 

On neural networks, some theoretical background can be found in Kecman (2001), 
Vidyasagar (2002) and De Wilde (1997). The application of neural networks in 
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dynamic modelling, estimation and control is treated in Hovakimyan et al. (2000), 
Norgaard et al. (2003) and Pham and Liu (1995). 

Considerable claims are being made for the achievements of new rivals to neural 
networks in the form of support vector methods, kernel methods and adaptive logic 
networks. See sample references Kecman (2001), Lee and Verri (2002), Cristianini 
and Shawe-Taylor (2000) or Sch6lkopf et al. (1999). 

19.12 Fuzzy logic and fuzzy control 

See Chen and Pham (2001) for an introduction and Abonyi (2002). 
Zadeh is generally regarded as the inventor of the theory of fuzzy logic; see Zadeh 

(1969, 1972) and Bellman and Zadeh (1970). 
Mamdami (1976) created the first laboratory application and Holmblad and 

Ostergaard (1982) pioneered the large-scale industrial application of fuzzy control. 

19.13 Genetic algorithms, genetic programming and other 
parallel evolutionary search methods 

Introductory references are Banzhaf (1998) and Reeves (2002). Zalzala and Fleming 
(1997) gives a useful overview of applications in engineering. Koza et al. (1999) 
shows how a GP approach backed up by massive computer power can synthesise 
complex solutions for control applications. Kalganova (2000) describes some of the 
computational specialism that is involved in solving realistically sized GA problems. 

Examples of alternative approaches using multi-agents and swarm intelligence 
are to be found in Ferber (1999) and Bonabeau et al. (1999) respectively. 

19.14 Intelligent and learning systems 

Sources of foundation theory for learning systems are Tsypkin (1971, 1973). Recent 
learning applications papers are Hahn et al. (2002) and Huang et al. (2002). 

Albus is a prominent author of forward-looking papers on intelligent machines 
and their architectures; see Albus and co-workers (1995, 1996, 1997, 2001), Meystel 
and Albus (2002) and Proctor and Albus (1997). 

19.15 Adaptive and model-based control 

Some of the most well-known model-based approaches are described in the following 
seminal references: 

Dynamic Matrix Control (DMC), Cutler (1982) 
Model Algorithmic Control (MAC), Richalet et al. (1977) 
Internal Model Control (IMC), Garcia and Morari (1982a, 1982b) 
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Generalised Predictive Control (GPC), Mohtadi (1987), Tsang and Clarke (1988) 
Generic Model Control (GMC), Lee and Sullivan (1988) 
Model Inferential Control (MIC), Parrish and Brosilow (1984) 
Fast Model Predictive Control (FMPC), Coales and Noton (1956) 
Other references on predictive and model based control are Camacho and 

Bordons (1999), Datta (1998), Forbes et al. (1983), Maciejowski (2001), Matausek 
et al. (2002), Mo and Billingsley (1990) and Soeterboek (1992). 

19.16 Stochastic aspects of control 

Jones (1988) has produced an interesting contribution linking deterministic with prob- 
abilistic design criteria. Most actual systems operate in a probabilistic environment 
(wind, waves, financial, political vagaries, etc.) whereas a large number of systems 
are designed, because it is easier, to satisfy simple deterministic criteria. The extent to 
which systems designed against deterministic criteria will/might satisfy probabilistic 
criteria is well discussed in the Jones paper. 

Suggested references are Aoki (1967), Papoulis (2002), Saridis (1995) and 
Sdderstrdm (2002). 

19.17 Some other control topics 

For modelling and identification see Davidson (1988), Godfrey (1993), Sandefur 
(2002), Seborg et al. (1989) and Srderstr6m and Stoica (1989). Large process models 
frequently need to be reduced in dimensionality as a prerequisite to control system 
design; some references on model reduction techniques are Kowalski and Jin (2002), 
Obinata and Anderson (2000), Prasad (2000), Slone et al. (2002). 

Control of linear time varying systems is covered by Kostas and Ioannou (1993) 
and of large scale systems by Koussoulas and Groumpos (1999), Lunze (1991) and 
Pierre and Perkins (1993). 

The control of overhead cranes travelling on horizontal tracks is important in sea- 
container and similar logistics. When such a crane needs to move from one position 
to another, the application of a simple step will often cause the suspended load to 
swing excessively. One approach is to apply a pre-shaped input function, designed to 
achieve a desired response. Such approaches are designated input shaping techniques, 
Park et al. (2001), Sahinkaya (2001). Of course, input shaping finds application to 
a range of areas outside crane control. 

19.18 General mathematics references 

The books quoted here are meant to supply long term mathematics foundation material 
to indirectly support control theory at research level. 

Rosenbrock (1970) gives a straightforward account of mathematics for control. 
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Hardy (1963), Binmore (1981), the old but still useful five-volume Goursat (1964) 
and the French series Cartan (1971), Choquet (1969), Dieudonnd (1969), Godement 
(1969) are all recommended. 

Further texts to explore are Birkhoffand Maclane (1965), Jacobson (1963), Kelley 
(1955), Kelley and Namioka (1963), Mostow et al. (1963), Protter and Morrey (1977) 
and Halmos (1950). 

Many of the books quoted above are mathematics classics. 
Both Klein (1924, 1948) and Armitage and Griffiths (1969) discuss elementary 

mathematics from an advanced, often geometric, viewpoint. Finally, mention must 
be made of the comprehensive high level authoritative works of that most mysterious 
of authors, Nicolas Bourbaki (1988). 

19.19 Ordinary differential equations 

The formulation, properties and solution of ordinary differential equations occupy 
a key role in system modelling and simulation. The structural and geometric prop- 
erties of ordinary differential equations underlie stability theory, state space theory, 
controllability and optimisation and lend central support to a wide range of research 
topics in control theory. 

A classical mainstream text is Coddington and Levinson (1955). 
Cesari (1963), Krasovskii (1963), Sanchez (1968) and Willems (1970) are 

concerned with stability aspects. 
Cartwright and Littlewood (1947) and Descusse (1989) are concerned with non- 

linear equations. 
Hirsch and Smale (1974) is a superb book that is concemed with fundamental 

properties. 
Arnold (1989) gives a quite different treatment than can be found elsewhere. His 

book might justifiably have been called 'Differential equations made difficult'! How- 
ever, it is a very worthwhile book dealing with elementary ideas from an advanced 
viewpoint. 

Structural aspects are covered in different ways, in Andranov et al. (1966), 
Bendixson (1901), Birkhoff (1927), Lefschetz (1977), Poston and Stewart (1976) 
and Nemitskii and Stepanov (1960). 

Two papers by Abd-Ali et al. (1975) and A bd-A li and Evans (1975) are concerned 
with structural aspects. 

As far as difference equations are concerned, Van der Pol and Bremmer (1955) is 
an admirable text. It is notable that this book is still frequently cited in the literature. 

19.20 Differential topology/differential geometry/differential algebra 

Heinz Hopf is generally considered to be the leading historic figure in the area. Hopf 
(1983) is a reprint of his classic lectures of some 40 years earlier. Milnor (1965), 
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Spivak (1965) and Guillemin and Pollack (1974) are recommended. Even a glance 
at any of these will make any mathematically inclined person appreciate the beauty 
of the topic. Differential topology is a beautiful and intuitively appealing subject that 
is concerned with smooth mappings from non-linear manifolds onto tangent spaces. 
The subject would appear to be designed for the local approximation of smooth 
non-linear systems but the take up in that direction was rather slow for some years 
although differential geometric approaches were used by, for instance, Sussman and 
Jurdjevic (1972) and Brockett (1978) to generalise linear systems attributes, such as 
controllability, to nonlinear systems. In particular, some of the geometric results of 
Wonham (1985) for linear systems have been made applicable to non-linear problems 
by Isidori (1985, 1999) and Fliess and Glad (1993). 

More recently, differential algebra has been applied to non-linear control prob- 
lems, for instance by Fliess (1985). A good self-contained reference to differential 
algebra and its application to non-linear control problems is Conte et al. (1999). See 
also Fliess and Hazewinkel (1986). 

Other books that may be found useful are Berger and Gostiaux (1988), Curtis 
and Miller (1985), Lang (1985). 

19.21 Theory of equations 

Several delightful old books on the theory of equations are: Chrystal (1964), Barnard 
and Child (1960), Burnside and Panton (1892), Hall and Knight (1964) and 
Todhunter (1904). The material in these references is scarcely to be found in later 
texts. Another book that contains much useful material not easy to discover elsewhere 
is Archbold (1970). 

19.22 Operator theory and functional analysis applied 
to linear control 

Linear multivariable control models are specially labelled examples of mapping/space 
configurations. Thus, the natural setting for linear control theory is in one sort of linear 
space or another - it is only the use of limited horizons that sometimes masks this 
fact. Amongst the many attractive features that are produced by a function-analytic 
viewpoint is the very strong and obvious structure that is necessarily imposed on any 
control problem that is formulated within that framework. For instance, the hierarchy 
of spaces (topological, linear, metric, Banach, Hilbert) constitutes a range of settings, 
with decreasing generality, for control problems. The last of these, a Hilbert space 
setting, is the natural environment for a distributed parameter optimisation problem 
with quadratic cost function, whereas the first, a topological setting, is so general as 
to be a qualitative setting for a wide class of problems. 
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References quoted here are in three categories: 

(i) Those that illustrate how functional analysis is applicable to control 
Here we quote Hermes and La Salle (1969), Leigh (1980), Leigh (1988c), 
Luenberger (1969), Porter (1966), Barratt (1963) and Rubio (1971). Of these 
the book by Porter affords possibly the easiest entry into the topic. There is a 
very large literature in the form of papers (not quoted below) with principal 
authors being: Balakrishnan, Butkovskii, Lions, Wang, PK. C. 

(ii) Those that deal with application of funetional analysis more generally 
Here we quote Curtain (1977) and specially point out Moore (1985). This book, 
concerned as it is with numerical results, necessarily bridges the gap between 
an idea and the realisation of that idea because of its algorithmic viewpoint. 
Another 'bridging' reference is Green (1969), which is concerned with integral 
equations. 

(iii) Those that are concerned with the subject of functional analysis per se 
Books on operator theory, linear spaces and spectral theory can be considered, 
for our purposes, to fall into this category. Thus there is a large literature available 
from which I have selected personal favourites. 

These include: Akhiezer and Glazman (1961), Balakrishnan (1976), 
Berberian (1974), Day (1962), Dunford and Sehwarz (two volumes 1958 and 
1963), Showalter (1977) and Chatelin (1983). 

The standard works on linear operators are Hille and Phillips (1978), a mon- 
umental work, and Riesz and Nagy (1955). 

19.23 Books of historical interest 

Early references, PoincarO (1892), on celestial motion and on stability, Maxwell 
(1868), Hurwitz (1895), Routh (1877, 1930), are very interesting. 

Maxwell set questions to students on the stability of spinning tops at a date before 
they had any stability criteria to help them and, while still a student, successfully 
proved that Saturn's tings were made up of disparate fragments by a rather general 
stability argument. Dr Tom Fuller has extracted and edited a number of Maxwell's 
works related to control and stability. They form a most valuable linked set of arti- 
cles and include the topics cited above (Fuller, 1979-86). (The work of Hurwitz is 
discussed in Chapter 7 of this book.) 

Bode (1945) and Nyquist (1932) are source references on frequency response 
methods. 

Bellman and Kalaba (1964) contains 13 historic control papers. Basar (2000) 
contains 25 annotated seminal papers ending with a paper by Zames from 1981. 

Other interesting references are Evans (1950, 1954) on the invention of the root 
locus, Jury (1958) on early work in sampled data and Kochenburger (1950) on 
relay control systems. Among other general references of historic interest are Hazen 
(1934a, b) and Oldenbourg and Sartorius (1948). 
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19.24 Miscellany 

Guest (1961) is a pre-computer-era book containing highly practicable techniques for 
fitting curves to time series to achieve interpolation, extrapolation and smoothing. 

Guillemin (1935, 1957) are concerned with filter synthesis. These techniques have 
relevance to the design of systems having particular frequency domain characteristics. 
(These references are chosen from a wide literature on the topic to be indicative of 
what is available.) 

Kalman, Arbib and Falb (1969) is an example of a whole genre of references 
concerned with general systems ideas. 

Shannon and Weaver (1972) is a slim book that gives an authoritative summary 
of information theory. The idea that the information represented by a changing situa- 
tion can be quantified at different levels of approximation by Shannon's ideas is very 
appealing. Control would then be seen as information capture (measurement), infor- 
mation flow (through a channel of sufficient capacity), and information processing 
in a controller. However, there are few examples of the ideas having been brought 
conclusively to bear on a significant control problem. 

The books by Arnold Sommerfeld (1949, 1950, 1952) are included because of 
their superb scholarly style. 

Aulin (1989) Brams (1983), Bunge (1959), Glansdorff and Prigogine (1971), 
Linderholme (1972), Segre (1984), Prigogine (1980), Rosen (1985), Toraldo (1981), 
Truesdell (1984), Wigner (1960) are some examples of books that are recommended 
for stimulating general interest reading. 

19.25 Useful tables 

A few selected sets of tables are: Dwight (1961), contains very comprehensive inte- 
gral tables; Gardner and Barnes (1942) and McCollum and Brown (1965) contain 
extensive tables of Laplace transform pairs. Prudnikov et al. (1992) is a very large 
two volume reference of Laplace transforms and inverses. Jolley (1961) is a com- 
prehensive table of series together with information on their summation. Burrington 
and May (1958) is a useful set of statistical tables. 

19.26 Alphabetical list of references and suggestions 
for further reading 

ABD-ALI, A. and EVANS, F. J. (1975): 'Structural aspects of stability in nonlinear 
systems', International Journal Control, 22, (4), pp. 493-516 

ABD-ALI, A., FRADELLOS, G., and EVANS, F.J. (1975): 'Structural aspects of sta- 
bility in nonlinear systems', International Journal Control, 22, (4), pp. 481-91 
(The two papers describe the work of Frank Evans' work on Helmholtz decom- 
positions of non-linear systems into two parts; governing stability behaviour and 
periodic behaviour respectively.) 
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ABONYI, J.: 'Fuzzy model identification for control' (Birkh/iuser, Boston, 2002). 
(Describes a new approach; instead of attempting to model the operator's decision 
making process, this new design strategy uses a fuzzy model of the process itself 
and imbeds this in a model-based control algorithm.) 

AGGARWAL, J. K.: 'Notes on nonlinear systems' (Van Nostrand Reinhold Company, 
New York, 1972) 

AHRENDT, W. R. and TAPLIN, J.: 'Automatic feedback control' (McGraw-Hill, 
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AKHIEZER, N. I. and GLAZMAN, I. M.: 'Theory of linear operations in Hilbert 
space' (Frederick Ungar Publishing Company, New York, 1961) 

ALBUS, J. S.: 'The NIST real-time control system (RCS): an approach to intelligent 
systems research'. Special issue of the Journal of Experimental and Theoretical 
Artificial Intelligence, 1997, 9, pp. 157-74 
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N o t a t i o n  

The notation conforms to 's tandard usage '  - there are no novel notations. However, 
the following list, in which symbols are defined with respect to the first chapter in 
which they appear, may be found useful. 

Chapter Symbol Meaning 

3 G 
D 
H 
V 

Y 
e 

4 x{ } 
x - t {  } 
S 

~u,y 
(zeta) 

(2) 

(O n 

COd 

(or  

R(P) 
I(P) 
a (sigma) 

Operator representing a system to be controlled 
Operator representing a controller 
Operator representing the behaviour of a composite system 
The desired value for y 
The measured value of system output 
The error between v and y 

The operation of Laplace transforming 
The operation of inverse Laplace transforming 
The complex variable associated with the Laplace transform 
Fourier transformation 
Convolution 
The correlation function between u and y 
Damping factor 
Frequency 
Undamped natural frequency 
Damped frequency 
Resonant frequency 
Real part of P 
Imaginary part of P 
The real part of a complex number- often used to label the real axis 
while jw is used to label the imaginary axis 

dy 
dt 
d2y 

dt 2 
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Chapter Symbol Meaning 

6 R n 

x(k) 

7 ( , )  

Ilxll 
Vv 

9 8x 
0u 

Ov 
xac(t) 

10 (gij) 
dp 
q/ 

dom L 
ker L 
dim X 

11 y* 
z{} 
Z 

O)s 

GO 
G'(s) 

12 

x ( j l j  - 1) 
K (j) 
8 

14 [,1 

8~  
~2 

sign(x) 
sup 

16 Hp, p > O  
H ~  

AG 
S 
T 
tTi(A) 
6- (A) if(A) 
R(A) 

n dimensional real space 
The value ofx after k sampling intervals has elapsed 

Inner product 
The norm of the vector x 
The gradient of the scalar v 

A small perturbation in x 

The partial derivative of u with respect to v 

A nominal trajectory that x is, a priori, expected to follow 

The matrix whose typical element is gij 
The transition matrix (defined by eqn. 10.18) 
The matrix defined by eqn. 10.18 
The domain of L 
The kernel of L 
The dimension of the space X 

The signal y after being sampled 
The operation of Z transformation 
The complex variable associated with the Z transform 
Sampling frequency 
The transfer function of a zero order hold device 
Go(s)G(s) 

An estimate of x 
The prediction error x - 
A prediction of the variable x (j) made at time (j 1) 
The Kalman gain at time j 
Expected value 

A closed interval 
Lagrange multiplier (do not confuse with usual usage as eigenvalue) 
The reachable set 
The boundary of the reachable set 
The admissible set of controls 
The attainable set 
= - l i f x  < 0 , = 0 i f x = 0 , = l i f x > 0  
supremum 

The family of Hardy spaces 
The Hardy space of all stable linear time-invariant continuous time 
system models 
A perturbation to a plant transfer function G 
The system sensitivity coefficient 
The system complementary sensitivity coefficient 
The ith singular value of some matrix A 
The largest and smallest singular value of A, respectively 
The range space of A 
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Chapter Symbol Meaning 

N(A) 
A* 

~v(GI, G2) 

bG,D 

L p [a, b] 
P 
C n 

C 
C 

eO 
lP,p > 0  

The null-space of A 
The adjoint of A 
The distance between two transfer functions as measured by the v 
gap metric 
The distance between a transfer function G and a controller D as 
measured by the b metric 
Lebesgue spaces defined on the interval [a, b] 
The space of all polynomials 
The space of all n times differentiable functions 
The space of all continuous functions 
The set of all convergent sequences 
The set of all sequences convergent to zero 
A sequence space 
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