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You have to test your stuff a lot,
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Chapter 1

Introduction

This chapter addresses a historical perspective of tracked vehicles
and motivates the use of tracked mobile robots. It highlights the
main contributions of this monograph. Finally, the main assump-
tions and limitations regarding the developed work are explained.

1.1 The Importance of Tracked Vehicles

1.1.1 Tracked Vehicles along History

The origins of tracked vehicles are closely motivated by the idea of developing
cross-country vehicles, that is, vehicles moving on off-road rough terrains
(packed snow, muddy roads, loose sandy soils, etc.). In 1770, a patent by
Richard L. Edgeworth firstly introduced the concept of what is known today
as full-track [6]: “the invention cossets in making portable railways to wheel
carriages so that several pieces of wood are connected to the carriage which
it moves in regular succession in such a manner that a sufficient length of
railing is constantly at rest for the wheels, to roll upon, and that when the
wheels have nearly approached the extremity of this part of the railway, their
motions shall lay down a fresh length of rail in front, the weight of which in its
descent shall assist in raising such part of the rail as the weeks have already
passed over, and thus the pieces of wood which are taken up in the rear are
in succession laid in the front, so as to furnish constantly a railway for the
weeks to roll on.” By those years none of the inventions became successful
products. A further step came with the introduction of internal-combustion
engines at the end of the 19th century. In this sense, a clear contribution
was the Holt tractor in 1911 (Figure 1.1a). This vehicle was widely used by
the British, French, and American armies in World War I for hauling heavy
equipment. This successful platform led to the development of war tanks.

After the War, the prolific research carried out was applied to agricul-
ture. Indeed during the years 1920-1940, many fundamental questions were
unfolded such as: the relationship between track and soil, the movement re-

R. González, F. Rodŕıguez, and J.L. Guzmán, Autonomous Tracked Robots in Planar 1
Off-Road Conditions, Studies in Systems, Decision and Control 6,
DOI: 10.1007/978-3-319-06038-5_1, c© Springer International Publishing Switzerland 2014



2 1 Introduction

sistance, sinkage, wheel dimensions, “ground pressure”, etc. That research
led to consider the development of tracked vehicles as a solid discipline [6].

At this point, it is interesting to introduce a brief discussion comparing the
performance of wheels and tracks. In this regard the article [133] constitutes
a solid reference. There, after several comparisons on different terrains (sand,
clay, loam), authors demonstrate that the thrust developed by a wheeled ve-
hicle will generally be lower than that developed by a comparable tracked
vehicle, this is particularly noticeable on cohesive soils. This is motivated by
the fact that the average normal pressure under the tires of a wheeled vehi-
cle will be higher than that under a comparable tracked vehicle. The paper
[54] states that the wheeled-vs-track dilemma is rooted in the following fun-
damental subjects: the vehicle’s mission, the terrain profile, and the specific
vehicular features. In particular, the main advantages of tracked vehicles are:

• They offer the best solution for a versatile platform that is required to
operate over diverse terrains even at different weather conditions. For that
reason this kind of vehicles are very common in search and rescue opera-
tions especially on snow.

• They generate low ground pressure, which leads to conserve the natural
environment. This motivates why tracked vehicles are employed in agricul-
ture (harvesting, planting, or spraying tasks) and mining activities (Figure
1.1b, d).

• They prevent from sinking, even becoming stuck, into soft ground, there-
fore they are ideal vehicles for loose sandy terrains like in military opera-
tions (hauling heavy artillery or as personnel transportation units) (Figure
1.1a, c).

1.1.2 Autonomous Tracked Vehicles

It is clear that tracked vehicles comprise a solid and successful way of trans-
portation, especially in off-road conditions. For that reason, when a roboticist
thinks about a mobile robot to operate in off-road conditions one of the first
options is to use tracked locomotion. However the task of making autonomous
a (tracked) vehicle leads to consider many challenging issues.

The behaviour of a mobile robot in outdoor off-road conditions is quite di-
fferent from a mobile robot working on structured indoor environments. The
most important disturbances and inconveniences affecting to off-road mo-
bile robots deal with the robot-terrain interactions, such as slip and sinkage
phenomena. The first issue to be solved is related to the robot mechanics. Off-
road applications generally require robots to travel across unprepared rough
terrains. This fact means that proper locomotion mechanisms and on-board
sensors should be selected to safely steer the robot autonomously [53, 117].
Furthermore, due to the robot can work in remote or inaccessible scenarios,
efficient power units and reliable communication systems are also required.
Figure 1.2 shows several tracked mobile robots applied in challenging off-road
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(a) Holt tractor, applied to hauling
heavy artillery during World War I
(year 1911) [6]

(b) Komatsu bulldozer D50, applied to
construction and mining (year 1947)
[97]

(c) Hagglunds Bv 206 vehicle, applied
to military personnel transportation
(year 1974) [52]

(d) Caterpillar D6M, applied to
agriculture (year 1986) (Source
www.cat.com)

Fig. 1.1 Some of the most successful vehicles and companies dealing with tracked
locomotion

conditions. In particular, Figure 1.2a deals with the robot Fitorobot develo-
ped for working inside greenhouses mainly in spraying activities [43]; Figure
1.2b presents the robot Auriga-β for fire extinction tasks [98]; next figure
is related to a research platform developed at the University of Minnesota
in which the tracked mechanical configuration is adapted in order to climb
stairs [100]; Figure 1.2d shows the well-known Packbot robot from iRobot,
this tracked robot is employed by the US troops to perform activities such
as: explosives detection and surveillance/reconnaissance, among others.
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(a) Fitorobot (University of Almeria,
Spain), agriculture (spraying activities)
[43]

(b) Auriga-β (University of Malaga,
Spain), fire extinction tasks [98]

(c) Research platform (University of
Minnesota, USA), stair climbing robot
[100]

(d) Packbot (iRobot, USA), military
activities

Fig. 1.2 Some examples of successful tracked mobile robots applied in off-road
conditions

As previously introduced, one fundamental factor that can affect the per-
formance of the motion of off-road mobile robots is the slip phenomenon. For
these reasons, the design of trajectory planners, motion controllers and loca-
lization strategies, taking into account this unavoidable effect, constitutes a
key issue in the field of off-road mobile robotics. For instance, in the work [46],
the kinematic modelling of a mobile robot, with and without slip, considering
several types of wheels is examined. These models are obtained from physical
principles. In [129], a study for four genericWheeled Mobile Robots (WMR) in
the presence of wheel skidding and slip from a control perspective is developed.
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Perturbations due to skidding and slip are categorically classified as input-
additive, input-multiplicative, and/or matched/unmatched perturbations. In
[125], an interesting software tool is presented evaluating the performance of
different robot locomotion mechanisms in off-road rough environments. The
works [33] and [78] address the problem of slip for an Ackermann-type agri-
cultural vehicle in which adaptive and predictive control techniques were used
to face the lateral slip effects. The work [76] contributes a comprehensive dy-
namic model of a tracked mobile robot that can be used to estimate key soil
properties upon which the robot operates. For that purpose, track slips, the
vehicle slip angle, and track forces are considered.

This chapter is organized as follows. Section 1.2 motivates and highlights
the main contributions of this monograph. An outline is addressed in Section
1.3. Finally, the main assumptions are stated in Section 1.4.

1.2 Motivation and Contributions

When a mobile robot moves in off-road conditions, some undesirable pheno-
mena, such as noisy measurements, slip and sinkage effects, changing light
conditions, and vibrations, among others; lead to inaccurate robot location
and influence negatively the controllability of the robot. Furthermore, the de-
sign of motion controllers usually requires simplified models and, sometimes,
some dynamics are too complex to be expressed by a set of mathematical
equations. For these reasons, modelling, localization and control issues re-
lated to off-road mobile robots are challenging research topics for the robotics
and automatic control communities.

From the point of view of the automatic control community, there are
many settled control strategies that can deal with such constraints and uncer-
tainties. However, motion control strategies that comprise both phenomena
are rarely found in the off-road mobile robotics literature. One of the main
reasons for this fact is that elaborate control strategies need a considerable
computation time, what in off-road mobile robot applications is really unde-
sirable due to the low performance of the computing resources and the low
sampling periods.

On the other hand, in order to achieve an appropriate control of the
off-road mobile robot, reliable “feedback” must be obtained from the robot-
environment interaction, particularly the robot location. In this case, locali-
zation techniques have to deal with the special features of off-road conditions
(previously depicted). Generally, popular solutions such as wheel-based odo-
metry and dead-reckoning could become unsuitable. Even sometimes, GPS-
based solutions are not applicable, for instance, in space exploration or in
partially covered environments. To overcome these shortcomings, probabilis-
tic techniques, such as Kalman filter or Particle filter, are usually consi-
dered combining data from different sources. The main drawback of these
approaches are that several (redundant) sensors must be available. One of



6 1 Introduction

the most successful approaches to localize mobile robots in off-road envi-
ronments is called visual odometry. This method estimates the robot motion
(location) using a sequence of images from an on-robot camera(s). One of the
most challenging issues about this technique deals with the “error growth”
phenomenon along long trajectories.

This monograph presents some state of the art and several novel solu-
tions of the specific issue of tracked mobile robots working in planar off-road
conditions. In this sense, this monograph focuses on obtaining appropriate
models and localization techniques for tracked mobile robots where the slip
phenomenon has a high influence (Chapters 2 and 3). Then, these models and
localization methods are used to design different motion control strategies for
a proper robot navigation in spite of the slip effects (Chapters 4 and 5).

First, an extended kinematic model for a tracked mobile robot (differential-
drive mechanism) taking into account slip effect has been suggested. This
model avoids the estimation of complex variables usually related to dynamic
models. Afterwards, a kinematic model for the trajectory tracking problem
is obtained. Different formulations of that trajectory tracking error model
are suggested (continuous-time, discrete-time, and discrete-time with addi-
tive uncertainty), which will be employed to design the motion controllers
subsequently. Physical experiments show that the kinematic model extended
with slip is more accurate than the classic kinematic one when a mobile robot
moves in off-road conditions.

Regarding the localization issue, a visual-odometry-based technique is sug-
gested. The most interesting point is that two cameras are combined, one for
estimate the robot longitudinal displacement and another camera to estimate
the robot orientation (visual compass). In this way, typical problems related
to error growth of odometry-based solutions and false-matching phenomena
of visual-odometry-based approaches are minimized.

Once the robot models and the localization techniques are developed and
described, three motion control strategies are suggested. First, the well-known
linear feedback controller [21, 64] is modified considering slip effect (Chap-
ter 4). In this case, time-dependent feedback gains are updated online using
the estimated slip. The main limitation of this control strategy is that state
and input constraints fulfillment and stability are not ensured. In order to
overcome these limitations, more elaborate control strategies are presented.
On the one hand, an adaptive control scheme formulated using Linear Ma-
trix Inequalities (LMI) is proposed (Chapter 4). The main advantages of
this control strategy are: asymptotic stability, performance, and input and
state constraints fulfillment. They have been guaranteed through the deter-
mination of an ellipsoidal invariant set and a quadratic Lyapunov function.
Efficient real-time execution has also been achieved solving online an LP
problem that produces the current feedback control gain as a convex combi-
nation of a set of offline gains (one gain for each extreme realization of the
system dynamics). The main limitation of this control scheme is that uncer-
tainties are not considered. For that reason, a robust Model-based Predictive
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Control (MPC) strategy has been proposed (Chapter 5). Particularly, this
controller has been formulated taking advantage of the concept of “tubes”.
The main advantages of this control strategy are: robustness (uncertainties
are taken into account in the controller synthesis), performance, input and
state constraints fulfillment, stability, and efficient real-time execution.

Notice that several robust control techniques exist in the literature, such as
Quantitative Feedback Theory (QFT) [56], control based on H∞-norm [138],
and μ-synthesis control [107], among others. For a summary see [4] and the
references therein. In this monograph, the robust MPC approach has been
selected due to the following goodness: an optimization problem of the type
Quadratic Programming (QP) is solved at each sampling instant obtaining
the proper control actions as a compromise between small deviations from
the reference trajectory and suitable control actions; it handles state and
input constraints directly in the optimization problem; it easily handles multi-
dimensional variables; easy tuning; reference trajectory is known a priori ; the
model related to robot motion is known, what means that future evolution
of robot motion can be predicted; there are several settled ways to robustify
standard MPC controllers (Open-loop Min-Max MPC, Feedback Min-Max
MPC, H∞ MPC, Tube-based MPC, etc.). For a detailed description about
robust MPC see [8, 18, 96, 111], and the references therein.

Finally, in order to validate previous contributions through physical expe-
riments, a mobile robot has been employed (see Figure 1.2a) [43]. The mobile
robot has a mass of 500 [Kg] and its dimensions are 1.5 [m] long × 0.7 [m]
wide. It is driven by a 20 [HP] gasoline engine.

In relation to physical experiments, a typical four-layer navigation archi-
tecture has been developed, which will run on the computer on-board the
mobile robot Fitorobot (Figure 1.3).

Fig. 1.3 Navigation architecture
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The first layer is devoted to path planning. This layer generates the refe-
rence or desired trajectories and velocities. In this monograph, it is considered
that the reference trajectory has been defined before the experiment starts.
The second layer includes the motion controllers previously introduced. In
the third layer, two low-level controllers have been implemented in order to
ensure that the set-points generated by the motion controllers are reached by
the robot tracks. For that purpose, two PI controllers with an anti-windup
scheme have been tuned (see [42] for details). The fourth layer is related to
the robot localization. In this case, the vision-based approach is employed.

1.3 Outline of this Monograph

This monograph is composed of six chapters. This current chapter serves as
an introduction and summarizes the main contributions.

In Chapter 2, the trajectory tracking error model using an extended kine-
matic model is formulated. The kinematic model is extended considering slip.
The trajectory tracking error model is discretized. The main purpose of this
model is to be employed in the design of slip compensation control strategies
for off-road mobile robots.

Chapter 3 deals with the vision-based approach.
In Chapter 4, adaptive slip compensation controllers are presented. First,

a linear feedback controller is formulated in a way that slip is used to modify
the feedback gains. Afterwards, an adaptive control strategy is formulated
using LMI.

Chapter 5 focuses on a robust control strategy. In this sense, a robust
predictive controller have been designed such that system uncertainties and
constraints are taken into account in the controller synthesis and efficient
computation time is also achieved.

Chapter 6 is devoted to conclusions and future research.

1.4 Assumptions and Limitations

At this point, five primary assumptions related to the work presented in this
monograph are highlighted.

The first assumption, and which is remarked in the title of this mono-
graph, is that the tracked mobile robots considered move mainly in planar
off-road conditions. This assumption avoids the problem of stable motion of
tracked vehicles on bumpy or stairs-like profiles (Figure 1.4). It is considered
that this problem is closer to a mechanical solution rather than the control
perspective addressed in this monograph. As deep discussion about this issue
is introduced in [47]. Anyway, high obstacles cannot be negotiated due to the
inability of tracked vehicles to change the track shape configuration or its
payload position. Even the limited suspension system.
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Fig. 1.4 Tracked locomotion on bumpy (or 3D) terrains [47]

The second assumption is that the mobile robots under consideration move
at slow velocities (≤ 2 [m/s]). Thus, lateral slip and forces arising from dy-
namic effects are neglected. As stated in [66], [76], [78], lateral slip is zero for
straight-line motions and it can be neglected when the vehicle turns “on the
spot” or at low velocities. However, longitudinal slip is an unavoidable effect
of the robot-terrain interaction [129], [132].

The third assumption is that the robot tracks are stiff relative to the
terrain, that is, the case of a track moving over a deformable terrain is con-
sidered [58].

The fourth assumption is that the robot is moving on narrow workspaces.
It means if the error between the reference trajectory and the real robot
trajectory is too large, the robot can crash with obstacles. The maximum
allowed deviation will be constrained according to each particular scenario.

The last assumption is that the environment, in which the mobile robot is
moving, is static and traversable.



Chapter 2

Modelling Tracked Robots in Planar
Off-Road Conditions

This chapter focuses on kinematic modelling of tracked mobile
robots in off-road slippery conditions. In this sense, a trajectory
tracking error model based on an extended kinematic model con-
sidering slip effect is formulated. This model avoids the estimation
of complex variables usually related to dynamic models. Physical
experiments show that the extended kinematic model is more accu-
rate than the classic kinematic model when a tracked robot moves
in off-road conditions.

2.1 Introduction

In the context of robotics, a model is defined as a set of mathematical di-
fferential equations that represents the behaviour of a robot. In this sense,
kinematic and dynamic modelling constitutes a key issue related to off-road
mobile robotics, since such models may be used to design appropriate me-
chanical structures [117, 125]; to design planning algorithms and motion
controllers [58]; to estimate the robot localization [123]; and to implement
software simulators [48], among others.

In this book, the modelling issues are mainly related to the design of
proper control strategies compensating/minimizing the slip phenomenon [50,
58, 61, 71, 79, 137]. Therefore, this chapter focuses on obtaining a model of
a Tracked Mobile Robot (TMR) moving on slip conditions to be used for
control purposes. Notice that there is a vast source of papers dealing with
the performance of tracked vehicles, there comprehensive models and detailed
analyses from a terramechanical point of view are found [6, 9, 36, 59, 66, 81,
108, 132]. In this monograph such models have been avoided since they are
quite complicated even they require numerous parameters some of them very
difficult to measure or to estimate.

As previously introduced, when a mobile robot operates in off-road condi-
tions, modelling problem requires to study and to analyze several phenomena
that affect to the robot mobility and controllability. In this sense, slip consti-
tutes one of the most important phenomenon dealing with the robot-terrain

R. González, F. Rodŕıguez, and J.L. Guzmán, Autonomous Tracked Robots in Planar 11
Off-Road Conditions, Studies in Systems, Decision and Control 6,
DOI: 10.1007/978-3-319-06038-5_2, c© Springer International Publishing Switzerland 2014
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interaction. Slip is defined as the difference between the velocity measured
by a track (theoretical velocity) and the actual forward vehicle velocity (real
linear velocity) [132]. Mathematically

ij = 1− v

ρωj
, (2.1)

where ij is the slip of track j, v is the forward vehicle velocity, ρ is the
track radius (sprocket) and ωj is the angular velocity of track j. Physically,
it means that, if the vehicle is subject to slip (v < ρωj), the distance that it
should travel is shorter than that which the vehicle would travel in an ideal
case where no slip is experienced1 (see Figure 2.1a).

(a) Longitudinal slip (b) Lateral slip

Fig. 2.1 Physical meaning of slip phenomena

In the case of tracked vehicles (or vehicles with rigid wheels), the slip phe-
nomenon is caused by different reasons. Lateral slip is only shown in vehicles
that turn to high velocities, and it is only related to the centrifugal force.
For that reason, when the tracked vehicle turns on the spot or moves at mid-
dle/low velocities, it can be neglected [1, 66, 76]. Longitudinal slip is due to
more complex processes. The most important process that motivates longitu-
dinal slip is the track-soil interaction. This effect deals with the properties of
the soil under the vehicle (deformation, cohesion, etc.), and the own vehicle
parameters (weight, track width, etc.). Another issue is the vertical stress
or sinkage that causes the vehicle sinks in the soil (especially in sand). This
produces a bulldozing effect along the motion of the vehicle [66, 76, 132],

1 A special case of slip is when there is a locked track, in which the angular velocity
is zero, whereas the linear velocity is not zero. Under this condition, slip can be
negative (v > rωj). In this book, this particular situation is not considered since,
in the employed testbed, the tracks never become locked. For a detailed discussion
see [62, 132].



2.1 Introduction 13

that implicitly influences the horizontal stress or longitudinal slip (see Figure
2.1a). Slip also depends on the track velocity, although for relatively small
velocities (as this book case ≤ 2[m/s]), velocity is not a significant factor,
compared to the terrain properties [2].

The main factors causing slip phenomenon in tracked vehicles are summa-
rized in the following:

Slip

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Soil parameters

{
Deformation (soil shear deformation modulus)
Cohesion (internal shearing resistance angle)

Vehicle parameters

⎧
⎨

⎩

Track width
Track length
Weight

Compaction of soil

{
Sinkage (weight and soil deformation)
Tractive force

Others

⎧
⎨

⎩

Velocity of the vehicle
Rolling resistance forces
Aerodynamics

As previously commented, this chapter focuses on obtaining a model of a
TMR moving on slip conditions. To this end, the Classic Kinematic Model
(CKM) of a differential-drive mobile robot [20], [118] has been extended to in-
clude the slip effect and resulting into the Extended Kinematic Model (EKM).
As found in the literature, for instance in [88], [98], the difference between
WMR (unicycle model) and TMR is that whereas the Instantaneous Cen-
tres of Rotation (ICR) for Wheeled Mobile Robots (WMR) are constant and
coincident with the ground contact points of the wheels, the ICR for TMR
are variable and lie outside the track centrelines due to lateral slip. How-
ever, as assumed in this book (see Section 1.4), no lateral slip is considered,
what means that the kinematic model of a TMR can be approximated by
the model of a differential-drive WMR, that is, we are considering the known
unicycle model but taking into account slip phenomenon. Notice that similar
kinematic models are employed in numerous works, see for instance, [31], [32],
[77], [128], [136], [137]. Such extended kinematic model is used for formulat-
ing a new trajectory tracking error model where slip will play a major role.
This model will be discretized and an additive term will be included taking
into account uncertainty. The objective of these models will be the synthesis
of several motion control strategies proposed in Chapters 4 and 5.

This chapter is organized as follows. Section 2.2 presents the extended kine-
matic model. In Section 2.3, the trajectory tracking error model is detailed.
In Section 2.4, the trajectory tracking error model is discretized and extended
considering uncertainty. Section 2.5 deals with state and input constraints. In
Section 2.6, different techniques to estimate slip in real-time are reviewed and
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the two selected strategies are explained. In Section 2.7, experimental results
validating the extended kinematic model are discussed and the uncertainty
term is analytically derived. Finally, Section 2.8 is devoted to conclusions and
future research.

2.2 Extended Kinematic Model with Slip

As known, in absence of track slip, the linear velocity of the tracks is given
by

vr(t) = ρωr(t),

vl(t) = ρωl(t), (2.2)

where vr ∈ R and vl ∈ R are the linear velocities of the right and left tracks,
respectively, t ∈ R

+ is the continuous time, and ωr ∈ R and ωl ∈ R are the
angular velocities of the right and left tracks, respectively. In this way, the
kinematic model for a differential-drive mobile robot is given by [20], [118]

ẋ(t) =
vr(t) + vl(t)

2
cos θ(t),

ẏ(t) =
vr(t) + vl(t)

2
sin θ(t), (2.3)

θ̇(t) =
vr(t)− vl(t)

b
,

where [x y θ]T ∈ R
3 represents the location (position and orientation) of

the mobile robot and b ∈ R
+ is the distance between tracks centres2 (see

Figure 2.2).
However, when the robot moves on slip conditions, the real velocity of the

tracks will be lower than the theoretical velocity of the tracks by a penalizing
factor [132]

vslr (t) = vr(t)
(
1− ir(t)

)
= ρωr(t)

(
1− ir(t)

)
,

vsll (t) = vl(t)
(
1− il(t)

)
= ρωl(t)

(
1− il(t)

)
, (2.4)

where vslr ∈ R and vsll ∈ R are the linear velocities under slip effect (vslr ≤
vr, v

sl
l ≤ vl), and ir ∈ R

+ and il ∈ R
+ are the right and left track slip

estimations, respectively.

2 Notice that given a point OL centered between the two drive wheels, each wheel
is a distance b/2 from OL; forward spin of right wheel (vr) results in counter-
clockwise rotation at point OL. The same calculation applies to the left wheel
(vl), with the exception that forward spin results in clockwise rotation at point
OL [118].
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Fig. 2.2 Motion of a tracked mobile robot ( OGXGYG is the reference or inertial
frame and OLXLYL is the local robot frame)

In this sense, taking into account the classic formulation of the kinematic
model for a differential-drive mobile robot (2.3), the continuous-time kine-
matic model of a robot on slip conditions is given by [2], [77], [136], [137]

ẋsl(t) =
vslr (t) + vsll (t)

2
cos θsl(t),

ẏsl(t) =
vslr (t) + vsll (t)

2
sin θsl(t), (2.5)

θ̇sl(t) =
vslr (t)− vsll (t)

b
.

where [xsl ysl θsl]T ∈ R
3 represents the location of the real mobile robot

on slip conditions.
For notational convenience, the model can also be written as

ẋsl(t) = vsl(t) cos θsl(t),

ẏsl(t) = vsl(t) sin θsl(t), (2.6)

θ̇sl(t) = ωsl(t),

where vsl = (vslr + vsll )/2 is the forward robot velocity and ωsl = (vslr − vsll )/b
is the angular robot velocity.
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2.3 Extended Trajectory Tracking Error Model with
Slip

Trajectory tracking consists in the problem in which a robot must follow
a reference or virtual mobile robot representing the desired locations and
velocities (see Figure 2.3). Notice that the trajectory tracking problem is
related to control the location and velocity of the robot [21], [64], while path
tracking only considers the location [22], [106]. In the latter case, the velocity
is viewed as a measured parameter, which is manually controlled.

Fig. 2.3 Graphical representation of the trajectory tracking problem. The objec-
tive is to reduce the error between the reference or virtual robot (dotted lines) and
the real robot (solid lines)

The objective of the trajectory tracking problem is to find a control law,
such that the error between the desired and the actual location of the mobile
robot is close to zero at any given time (regulation problem). Thus, a trajec-
tory tracking error model using the previous EKM (2.5), (2.6) is presented
in this section to be used for that purpose.
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Suppose that the reference robot follows a trajectory calculated through
unicycle kinematics, that is,

ẋrf (t) =
vrfr (t) + vrfl (t)

2
cos θrf (t),

ẏrf(t) =
vrfr (t) + vrfl (t)

2
sin θrf (t), (2.7)

θ̇rf (t) =
vrfr (t)− vrfl (t)

b
,

where [xrf yrf θrf ]T ∈ R
3 represents the location of the reference robot

and vrfr ∈ R, vrfl ∈ R are the desired velocities for the right and left tracks,
respectively.

For notational convenience, the model is also written as

ẋrf (t) = vrf (t) cos θrf (t),

ẏrf (t) = vrf (t) sin θrf (t), (2.8)

θ̇rf (t) = ωrf (t),

where vrf = (vrfr + vrfl )/2 is the forward reference velocity, and ωrf =

(vrfr − vrfl )/b is the angular reference velocity.
As discussed in the previous section, the real mobile robot will move on slip

conditions, and thereby, it is modelled by (2.5). Then, the error or deviation
between the reference and the real robot, expressed in relation to the real
robot frame, is given by

⎡

⎣
ex(t)
ey(t)
eθ(t)

⎤

⎦ =

⎡

⎣
cos
(
θsl(t)

)
sin
(
θsl(t)

)
0

− sin
(
θsl(t)

)
cos
(
θsl(t)

)
0

0 0 1

⎤

⎦

⎡

⎣
xrf (t)− xsl(t)
yrf (t)− ysl(t)
θrf (t)− θsl(t)

⎤

⎦ , (2.9)

where ex ∈ R is the longitudinal error, ey ∈ R is the lateral error and
eθ ∈ R is the orientation error. These errors are graphically represented in
Figure 2.3.

Differentiation of (2.9) with respect to time yields

⎡

⎣
ėx
ėy
ėθ

⎤

⎦ =

⎡

⎣
0 ωsl 0

−ωsl 0 0
0 0 0

⎤

⎦

⎡

⎣
ex
ey
eθ

⎤

⎦+

⎡

⎣
cos eθ
sin eθ
0

⎤

⎦ vrf −

−
⎡

⎣
1
0
0

⎤

⎦
vr + vl

2
+

⎡

⎢
⎣

0
0

(
vrf
r −vrf

l

b − vr−vl
b )

⎤

⎥
⎦+

⎡

⎣

vrir+vlil
2
0

vrir−vlil
b

⎤

⎦ . (2.10)
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Finally, the non-linear model (2.10) can be linearized around the reference
trajectory (see Remarks 1 and 2), following two approaches. The first case
consists in to define the variable

λ =
vrfr ir − vrfl il

b
. (2.11)

Afterwards, a first-order Taylor expansion is carried out, obtaining

⎡

⎣
ėx
ėy
ėθ

⎤

⎦ =

⎡

⎣
0 ωrf − λ 0

−(ωrf − λ) 0 vrf

0 0 0

⎤

⎦

⎡

⎣
ex
ey
eθ

⎤

⎦+

+

⎡

⎣

−1+ir
2

−1+il
2

0 0
−1+ir

b
1−il
b

⎤

⎦

[
vr
vl

]

+

⎡

⎣

1
2

1
2

0 0
1
b

−1
b

⎤

⎦

[
vrfr
vrfl

]

, (2.12)

In this case, an affine model has been obtained. Now, defining the following
variable change

u1 =
−1 + ir

2
vr +

−1 + il
2

vl +
vrfr
2

+
vrfl
2

, (2.13)

u2 =
−1 + ir

b
vr +

1− il
b

vl +
vrfr
b

− vrfl
b

, (2.14)

the affine model (2.12) becomes

⎡

⎣
ėx
ėy
ėθ

⎤

⎦=

⎡

⎣
0 ωrf − λ 0

−(ωrf − λ) 0 vrf

0 0 0

⎤

⎦

⎡

⎣
ex
ey
eθ

⎤

⎦+

⎡

⎣
1 0
0 0
0 1

⎤

⎦

[
u1

u2

]

, (2.15)

which is expressed in state space representation as the following continuous-
time linear time-varying system (see Remark 3)

ė(t) = Aγ(t)e(t) +Bu(t), (2.16)

where e = [ex ey eθ]
T ∈ R

3 is the state vector (position and orientation
errors), u = [u1 u2]

T ∈ R
2 is the input vector (see Remark 4). The system

matrix Aγ and the input matrix B are defined as

Aγ(t) =

⎡

⎣
0 ωrf (t)− λ(t) 0

−(ωrf (t)− λ(t)
)

0 vrf (t)
0 0 0

⎤

⎦, B =

⎡

⎣
1 0
0 0
0 1

⎤

⎦ . (2.17)

Assumption 1. Assume that reference robot track velocities and slip fac-
tors are known at each sampling instant, positive and bounded, i.e., vrfr ∈
[vrf,mr , vrf,Mr ], vrfl ∈ [vrf,ml , vrf,Ml ], ir ∈ [imr , iMr ], and il ∈ [iml , iMl ]. Note that
the reference robot always moves forward.
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As previously remarked, an alternative formulation can be obtained using
the dynamic feedback linearization procedure [21], [106]. In this way, before
linearization (2.12), the following parameters are defined

ς(t) =
vr(t)ir(t) + vl(t)il(t)

2
, (2.18)

ϑ(t) =
vr(t)ir(t)− vl(t)il(t)

b
. (2.19)

Then, a similar first-order Taylor expansion to (2.12) is carried out. Af-
terwards, according to the feedback linearization procedure, the following
virtual control signals are considered

u′
1(t) = vrf (t) cos

(
eθ(t)
)− v(t) + ς(t)− ϑ(t)ey(t), (2.20)

u′
2(t) = ωrf (t)− ω(t) + ϑ(t). (2.21)

Now, the trajectory tracking error model becomes

ė(t) = A′
γ(t)e(t) +Bu′(t), (2.22)

where u′ = [u′
1 u′

2]
T ∈ R

2 is the input vector, the input matrix B is the
same than that defined in (2.17), and the system matrix A′

γ is now defined as

A′
γ(t) =

⎡

⎣
0 ωrf(t) 0

−(ωrf(t)− ϑ(t)
)

0 vrf(t)
0 0 0

⎤

⎦ . (2.23)

Notice that this model will be employed in Chapter 4, Section 4.2 to design
the slip compensation linear feedback controller.

Remark 1. Notice that the mismatch between the linearized model and the
non-linear system grows for values of eθ far from zero. It will be shown that,
in practice, after the transient, eθ remains close to zero. Then, the problem
can be present at the first instants, due to the initial condition. For that
reason, it is assumed that, in practice, the real robot and the reference virtual
robot start close.

Remark 2. It is important to point out that the system has been linearized
around the reference, that is, vr = vrfr , vl = vrfl , and e = 0. Notice that a
similar linearization procedure to that found in the following references [21],
[64] has been obtained. The result obtained in this book is also acceptable,
since slip is not known when reference velocities are defined. However, now,
some terms that depend on slip appear in the model. This fact is really ad-
visable, especially to design the slip compensation control strategies proposed
in Chapters 4 and 5.

Remark 3. From Assumption 1, a time-varying vector of parameters
γ = [vrfr (t) vrfl (t) ir(t) il(t)]

T ∈ R
4 can be defined, and a bounding set
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Γ ⊆ R
4, such that γ(t) ∈ Γ, ∀t ∈ R

+. For any admissible realization of
parameter γ ∈ Γ , a dynamic matrix denoted as Aγ(t) is obtained. It follows
that Aγ(t) ∈ Aγ where Aγ is a polytope in R

3×3.

Remark 4. Note that, according to (2.13)-(2.14), the linear velocities for
each track are obtained as

vr(t) =
vrfr (t)− u1(t)− b

2u2(t)

1− ir(t)
, (2.24)

vl(t) =
−vrfl (t) + u1(t)− b

2u2(t)

−1 + il(t)
. (2.25)

where vr ∈ [vmr , vMr ] and vl ∈ [vml , vMl ]. This leads to bounds on the space

of u, which are obtained from the constraints on vr, vl, ir, il, v
rf
r , vrfl (see

Section 2.5).

2.4 Discrete-Time Trajectory Tracking Error Model
and Model Uncertainties

In this section, the trajectory tracking error model (2.16) is discretized to
be used for the synthesis of the controllers proposed in Chapters 4 and 5.
For that purpose, the Euler discretization with sampling period Ts has been
employed. In this way, the following discrete-time linear time-varying system
is obtained

e(k + 1) = Aγ(k)e(k) +Bdu(k), (2.26)

where k ∈ Z
+ is the discrete sample, and the system and input matrices, Aγ

and Bd, are now defined as

Aγ(k) =

[
1 Ts

(
ωrf (k) − λ(k)

)
0

−Ts

(
ωrf (k) − λ(k)

)
1 Tsv

rf (k)
0 0 1

]

, Bd =

[
Ts 0
0 0
0 Ts

]

.(2.27)

Notice that, for notational convenience, Aγ is used both for continuous-time
and discrete-time models. The script (k) or (t) will clarify the discrete-time
or continuous-time domain, respectively.

The model (2.26) will be employed in Chapter 4 to design an adaptive
control strategy.

Finally, the model represented by (2.26) is reformulated considering addi-
tive uncertainty

e(k + 1) = Aυ(k)e(k) + Bdu(k) + w(k), (2.28)

where w is the additive uncertainty term satisfying w ∈ W withW a polytope
in state space R

3. Notice that the bounding set W includes: the deviation
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between the non-linear continuous-time model and the linear discrete-time
model, the effects of the noise in the slip estimations, and the uncertainty
in the estimation of the robot location (see Section 2.7). In a similar way to

Remark 3, υ = [vrfr (k) vrfl (k)]T ∈ R
2 is defined as a time-varying vector

such that υ(k) ∈ Υ, ∀k ∈ Z
+, where Υ ⊆ R

2 is a polytope. For any admi-
ssible realization of parameter υ ∈ Υ , a dynamic matrix denoted as Aυ(t) is
determined. It follows that Aυ(t) ∈ Aυ where Aυ is a polytope in R

3×3.
The system matrix Aυ is defined as

Aυ(k) =

⎡

⎢
⎢
⎣

1 Ts
(1−īr)v

rf
r (k)−(1−īl)v

rf
l

(k)

b 0

−Ts
(1−īr)v

rf
r (k)−(1−īl)v

rf
l

(k)

b 1 Tsv
rf (k)

0 0 1

⎤

⎥
⎥
⎦ , (2.29)

where īr and īl are the right and left track nominal slips, respectively.

Assumption 2. Assume that the nominal slip values are known a priori.
Particularly, they are defined as the mean slip value of a terrain.

The nominal model is defined as

ē(k + 1) = Aυ(k)ē(k) +Bdg(k), (2.30)

where ē = [ēx ēy ēθ]
T ∈ R

3 is the nominal state, and g ∈ R
2 is the control

input for the nominal system.
The models (2.28) and (2.30) will be employed in Chapter 5 to design a

robust predictive control strategy. For that reason, the nominal slip is used
in the definition of the system matrix Aυ, since the real values of ir and il
are unknown for the predictions3.

2.5 State and Input Constraints

At this point, it is considered that the trajectory tracking error models (2.26)
and (2.28) are both subject to constraints. These constraints are imposed on
the states and on the control signals. Regarding the state constraints, and
as pointed out in Section 1.4, it is supposed that the robot moves on narrow
spaces. This physical limitation can be translated to error coordinates, since
the current robot location is represented in terms of distance from the ori-
gin, which is the location of the reference robot. If the errors are maintained
bounded and close to zero, then the behaviour of the real robot is close to

3 Notice that it is also possible to consider the estimated slip, in spite of the
nominal one. In such case, the estimated slip will be fixed during the prediction
horizon. However, it is supposed that, in that case, the uncertainty set could be
different from the one considered here.
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the ideal one, and, therefore, far from the obstacles. In this sense, bounds on
the states (ex, ey, eθ) are established as4

emx ≤ ex(k) ≤ eMx ,

emy ≤ ey(k) ≤ eMy , (2.31)

emθ ≤ eθ(k) ≤ eMθ .

On the other hand, trackmotors have physical bounds in terms of maximum
(or minimum) velocity. For that reason, as commented in Remark 4, velocity
constraints must be translated to virtual control signals constraints5 (cons-
traints mapping). The constraints in terms of velocities are expressed as

dmr ≤ Cru(k) ≤ dMr ,

dml ≤ Clu(k) ≤ dMl , (2.32)

where Cr = [−1 − b/2], Cl = [−1 b/2], and

dMr =
(
vMr (1 − iMr )

)− vrf,Mr ,

dmr =
(
vmr (1− imr )

)− vrf,mr , (2.33)

dMl =
(
vMl (1 − iMl )

)− vrf,Ml ,

dml =
(
vml (1− iml )

)− vrf,ml .

Notice that state and input constraints can be considered in terms of

e(k) ∈ E, u(k) ∈ U, (2.34)

where E ⊆ R
3 and U ⊆ R

2 are polytopes that contain the origin.

2.6 Estimating Slip

This section describes some typical ways to estimate slip (2.1) and how two
of them have been adapted and implemented for the physical experiments in
this book.

First, some techniques to estimate the slip are reviewed. The most impor-
tant differences come from how the forward velocity of the vehicle and the
angular velocities of the tracks are determined. For instance, in [9], angu-
lar velocity is measured using two kinds of sensors, a proximity sensor and

4 Recall from Section 1.4 that such bounds will be imposed according to each
particular scenario.

5 Notice that, for notational convenience, the term virtual control signals is also
referred to u1 and u2. Strictly speaking, this term should be only applied to the
control signals obtained through the dynamic feedback linearization procedure
(2.20)-(2.21).
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a dynamo-tachometer sensor. The linear velocity of the vehicle is obtained
using three types of sensors, a cable-extension transducer, an encoder wheel,
and a Doppler radar. In [2] and [50], slip is calculated as the difference bet-
ween the velocity obtained using visual data and the kinematic model of the
vehicle. A method for lateral slip estimation based on visually observing the
trace produced by the wheels is presented in [112]. In the work [116], slip is
estimated using a Kalman filter combining information from an Inertial Na-
vigation System (INS) and laser scanner sensors. An Extended Kalman Filter
(EKF) combining IMU, GPS and wheel encoder measurements is proposed
in [130]. In [80], the authors use the difference between position measured by
GPS and foreseen position computed from kinematic model to estimate slip.
For a review of more slip estimation strategies see [60].

In this book, a first solution was to measure the angular velocity of the
tracks using encoders and the robot forward velocity using a Doppler radar.
The main advantage of this approach is that it is a straightforward approach
to estimate the slip. For instance, solutions based on consumer-grade GPS
provide low frequency updates making GPS too slow for slip estimation when
fast applications are being employed [60], as it is the case of this book. The
main limitation of this first strategy comes from the Doppler radar. Parti-
cularly, the Doppler radar suffers multi-path interference problems. Further-
more, it does not work properly at low velocities.

On the other hand, a similar approach to that proposed in [2] and [50]
has also been implemented. In this case, the forward velocity of the robot
comes from analyzing visual data using the technique known as visual odo-
metry (see Chapter 3 for details). The angular velocity, as in the former
case, comes from encoders. The main advantage of this approach is that it is
an inexpensive method, since a consumer-grade camera replaces the Doppler
radar. Additionally, it works properly when the robot moves at low velocities.
The main limitation of this technique is that the performance of the vision-
based algorithm is degraded in featureless environments and false matches
can lead to erroneous slip estimations. These two approaches to estimate slip
are analyzed in the following section through experimental tests.

2.7 Results

In this section, the extended kinematic model (2.5) is validated through se-
veral physical experiments. For that purpose, the TMR Fitorobot was used.
Furthermore, an experimental method to estimate the additive uncertainty
set is presented.

2.7.1 Testing the Sensor Performance

As commented above, two approaches to estimate slip have been imple-
mented. Recall that the way in which slip is considered in this book follows
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as the relation defined in (2.1). For that reason, it is necessary to measure
the forward linear velocity (v) and the theoretical velocity of each track (ρωr,
ρωl). The theoretical velocity is measured using two incremental encoders at-
tached to the track drive sprockets (DRS61, Sick AG, Waldkirch, Germany).
The forward velocity has been measured by using two different alternatives,
a Doppler radar (Compact II, LH Agro, Springfield, USA) and a vision-based
approach called visual odometry (see Chapter 3 for details). Before valida-
ting the EKM, the tests carried out to check the performance of these two
approaches are discussed.

Figure 2.4 shows the result of an experiment moving the robot at velocities
in the range [0, 1] [m/s]. In this case, the theoretical velocities obtained
from encoders are also plotted (labeled as “Right enc.” and “Left enc.”).
It is observed that the Doppler radar does not work properly at velocities
lower than 0.4 [m/s]. This erroneous behaviour is due to the resolution of the
sensor. The vision-based approach (referred to as “Visual Odometry”) works
properly for low velocities. However, it produces a unsatisfactory result for
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Fig. 2.4 Linear velocities during an experiment on pavement terrain

(a) Image taken at low velocities (<1 m/s) (b) Image taken at high velocities (blur effect)

Fig. 2.5 Images used for the vision-based approach
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velocities close to 1 [m/s]. It was observed that when the robot moves at
these velocities, a blur effect occurs in the images, see Figure 2.5. This issue
leads to unsuccessful results and it will be deeply analyzed in Chapter 3,
Section 3.3.

Once it was advised that Doppler radar works properly at middle-high
velocities (> 0.4 [m/s]), it was also tested for a circular trajectory. Notice
the different velocities of the encoders in Figure 2.6a. Again, the Doppler
radar works correctly after a transient, that is, after 3 [s]. The vision-based
approach was tested in a low-velocity experiment.

As verified in Figure 2.6b, it works properly for the range [0, 0.4] [m/s].
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Fig. 2.6 Physical experiments testing the performance of the Doppler radar and
the vision-based technique to estimate the linear robot velocity

After many physical experiments, the conclusion was that the Doppler
radar cannot be employed at low velocities (< 0.4 [m/s]), since it does not
work properly or produces shaky readings. Notice that similar problems to
these detected here are also reported in [9], [60]. On the other hand, the
vision-based approach works satisfactorily for velocities lower than 1 [m/s].
For higher velocities, blur effect affects to the images and the forward velocity
estimation becomes erroneous.

2.7.2 Model Validation

In this subsection, the EKM (2.5) is validated and compared with the CKM
(2.3). Notice that model (2.5) has been discretized using a sampling period of
Ts = 0.25 [s]. In order to compare both models, the mobile robot Fitorobot
was teleoperated over different slip-behaviour flat terrains for a fixed distance
of 20 [m]. Notice that it can be considered a reasonable distance to obtain
reliable conclusions from the physical experiments. The velocity was ranged
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between [0, 1.2] [m/s], the track radius is ρ = 0.15 [m] and the distance
between the track centres is b = 0.5 [m]. It is important to remark that the
robot was moving on open-loop experiments (manually driven), what means
that the error between the reference and the trajectory obtained from the
kinematic models will diverge. Even the ground-truth can slightly differ with
the marked reference trajectory. Furthermore, since the robot mainly moved
to velocities greater than 0.6 [m/s], the Doppler radar was selected to measure
the linear forward velocity.

The data from a DGPS (R100, Hemisphere, Calgary, Canada) was recor-
ded, which is used as ground-truth. The DGPS has an accuracy of 0.20 [m].
Notice that in order to validate the trajectories obtained with the EKM and
the CKM, the global position (Latitude/Longitude) has been converted to
Universal Transverse Mercator (UTM) grid system [51], and hence to relative
position from the starting point. On the other hand, the sensor data were fil-
tered by a low-pass filter, with a smoothing factor (filter constant) of 0.78 [s]
for the encoders and the vision-based measurements, and of 0.70 [s] for the
Doppler radar readings.

First, the mobile robot was moved on a sandy terrain, see Figure 2.7a. It
constitutes a deformable terrain in which tracks suffer slip and sinkage phe-
nomena, see Figure 2.7b. Figure 2.7c shows a comparison of the trajectories
obtained using the kinematic models. In this case, the trajectory obtained
using the EKM closely follows to the ground-truth obtained from DGPS.
The Euclidean distance between the travelled trajectory using the EKM and
the ground-truth is 0.73 [m], and using the CKM is 2.78 [m]. That means
an error of 3.68 [%] with respect to the total travelled distance for the EKM
and of 14.03 [%] for the CKM. As expected, since the CKM does not take
into account the slip phenomenon, the travelled distance is larger than that
reached by the mobile robot. These data show that slip has a great influence
in the robot motion. Finally, Figure 2.7d displays the slips of each track. In
this experiment, the median slip value was close to 12 [%].

It is important to remark that although a high value of slip is expected
according to similar experiments appeared in the literature, see for instance
[2], different reasons justify the obtained result: (i) experiments similar to
those carried out here are related to wheeled robots. In this case, a tracked
robot was employed, and these vehicles are typically built to reduce slip and
sinkage effects, what means that slip will be smaller than in wheeled vehicles
in the same conditions, see for instance [54], [114], [133]; (ii) The robot was
moved on a completely flat terrain, in the literature the experiments are
usually carried out in loose terrains with significant slopes [2], [62].

It is also important to remark that before 1.5 [s], the Doppler radar mea-
surements are zero due to the resolution of the sensor. For that reason, slip
at the beginning of the test is 100 [%].

Secondly, the mobile robot was moved on gravel soil, see Figure 2.8a. This
soil is composed of a thin stony/sandy top layer with a rigid compacted
sand layer below, see Figure 2.8b. As checked in Figure 2.8c, the trajectory
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(a) Mobile robot (b) Detail of the soil
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Fig. 2.7 Model validation on sand soil

obtained using the kinematic models does not follow the ground-truth due
to the open-loop nature of the experiments. Nevertheless, the EKM follows
better the ground-truth than the CKM. The Euclidean distance between the
travelled trajectory using the EKM and the ground-truth is 2.18 [m], and
using the CKM is 5.46 [m]. That means an error of 10.58 [%] with respect
to the total travelled distance for the EKM and of 26.52 [%] for the CKM.
Again, the travelled distance obtained using CKM largely deviates from the
ground-truth due to slip effect. Figure 2.8d shows the slips of each track. In
this case, the median slip value is 4.5 [%]. As expected, the slip is lower than
in sandy terrain, the reason is that this gravel soil constitutes a rigid terrain
where there is a small sinkage effect.

Afterwards, the mobile robot was moved on grass, see Figure 2.9a. This
terrain has a grassy top layer with a soft sandy layer below, see Figure 2.9b.
The trajectories are compared in Figure 2.9c. The trajectory obtained using
the EKM closely follows the ground-truth. The Euclidean distance between
the travelled trajectory using the EKM and the ground-truth is 1.40 [m], and
using the CKM is 3.64 [m]. That means an error of 7.24 [%] with respect to
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(a) Mobile robot (b) Detail of the soil
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Fig. 2.8 Model validation on gravel soil

the total travelled distance for the EKM and of 18.84 [%] for the CKM. The
slips of each track are depicted in Figure 2.9d. In this case, the median slip
value is 8 [%]. As expected, the slip is lower than in sandy terrain. However,
it is higher than that obtained in gravel soil. The reason is that the terrain
below the grassy layer is softer than that of the gravel soil. This induced a
greater sinkage effect and, hence, a greater slip.

Finally, the mobile robot was moved on a pavement ground, see Figure
2.10a. In this case, the robot suffered a quite low slip and an insignificant
sinkage, since it is a rigid non-deformable surface, see Figure 2.10b. Figure
2.10c shows a comparison of the trajectories obtained using the kinematic mo-
dels. The Euclidean distance between the travelled trajectory using the EKM
and the ground-truth is 1.17 [m], and using the CKM is 2.93 [m]. That means
an error of 5.70 [%] with respect to the total travelled distance for the EKM
and of 14.29 [%] for the CKM. Although the longitudinal travelled distance
obtained using the EKM is smaller than the ground-truth, the Euclidean dis-
tance between the ground-truth and the trajectory obtained using the EKM
is smaller than in the case of the CKM. Figure 2.10d displays the slips of
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Fig. 2.9 Model validation on grass soil

each track. In this case, the median slip value is 1.15 [%]. As expected, the
slip is very small due to the robot was moving on a non-deformable surface.

In conclusion, Table 2.1 summarizes the most important data from the
physical experiments carried out to compare the EKM with the CKM. As
previously remarked, notice that smaller deviation between the trajectory
obtained using the EKM and the ground-truth in relation to the CKM. Es-
pecially remarkable, the Euclidean distance on sandy soil is almost four times
smaller than in the CKM case.

2.7.3 Additive Uncertainty Identification

The set W ⊆ R
3 defined in (2.28) represents the uncertainty affecting the

state at each sampling instant. This uncertainty bounds the mismatch bet-
ween the continuous-time non-linear trajectory tracking error model and the
discrete-time linear model, the noise in the slip estimation, and the uncer-
tainty in the robot localization (see Section 2.4).
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Fig. 2.10 Model validation on pavement ground

Table 2.1 Summary of model validation experiments

Feature / Surface Sand Gravel Grass Pavement

Median Slip [%] 12 4.5 8 1.15

Euclidean dist. EKM vs
ground-truth [m]

0.73 2.18 1.40 1.17

Euclidean dist. CKM vs
ground-truth [m]

2.78 5.46 3.64 2.93

This subsection focuses on the mismatch between the continuous-time
non-linear trajectory tracking error model (2.10) and the discrete-time li-
near model (2.26). For that purpose, different input values for both models
have randomly simulated. The set W has been obtained as the bounded mis-
match between these models. Notice that w ∈ W will be a vector of the form
[wx wy wθ]

T , where each component is related to the mismatch in the lon-
gitudinal (ex), lateral (ey), and orientation (eθ) error state, respectively. It
is important to point out that such set, W , will be heuristically enlarged to
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take into account slip estimation noise and uncertainty in robot localization
(see Chapter 5).

In this case, 1000 random points using the bounds defined in Table 2.2 have
been simulated, and supposing that the distance between the track centres
is b = 0.5 [m] and the sampling period is Ts = 0.1 [s]. As an example, Figure
2.11 shows the random values for the states and the reference velocities.
Figure 2.12 presents the result of the simulation. From this experiment, it
was checked that wx is within [-0.028, 0.023] [m], wy is within [-0.021, 0.022]
[m] and wθ is within [-0.97, 1.03] [deg].

Table 2.2 Bounds used to calculate the additive uncertainty term

Max Min Units

Robot vel.

vr 2 -2 [m/s]

vl 2 -2 [m/s]

States

ex 0.5 -0.5 [m]

ey 0.5 -0.5 [m]

eθ 20 -20 [deg]

Reference vel.

vrfr 1.4 0.1 [m]

vrfl 1.4 0.1 [m]

Slip

ir 5 25 [%]

il 5 25 [%]
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Fig. 2.11 Random values for the simulation. Simulation of 1000 points
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Fig. 2.12 Mismatches between the continuous-time non-linear EKM and the
discrete-time linear EKM. Simulation of 1000 points

2.8 Conclusions

This chapter has presented several formulations to the trajectory tracking
error model for a tracked mobile robot. The main contribution is that this
model has been formulated using an extended kinematic model in which slip
effect is taking into account. Such models will be used in Chapters 4 and 5
to synthesize several motion control strategies.

A discrete-time linear trajectory tracking error model including additive
uncertainties has also been suggested. Such model is really advisable for mo-
bile robotics applications where many uncertainties may occur. For instance,
inaccurate robot location and noisy sensor measurements, among others.
In this book, such uncertainty term deals with the mismatch between the
continuous-time non-linear trajectory tracking error model and the discrete-
time linear model, the noise in the slip estimation, and the uncertainty in the
robot localization.

Another interesting conclusion from this chapter is the validation of two
ways to measure the actual forward robot velocity and, hence, the slip. First,
the forward velocity was measured using a Doppler radar. The main advan-
tage of this approach is that it is an easy and immediate approach to estimate
the slip. However, as checked in physical experiments, it does not work pro-
perly at velocities lower than 0.4 [m/s]. Secondly, the forward velocity of the
robot was obtained analyzing visual data using the visual odometry tech-
nique. The main advantage is that it works properly when the robot moves
at velocities lower than 1 [m/s]. The main limitation of this technique is the
blur phenomenon.

The results carried out validating the EKM indicate that slip is especially
noticed on sandy terrains where there is a certain degree of deformability.
Particularly, the experiments carried out show a slip value around 12 [%].
Physical experiments evidenced that, for the case of mobile robots operating
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in off-road conditions, slip constitutes a unavoidable phenomenon, and an
essential factor that affects the robot mobility. For that reason, appropriate
localization techniques and control strategies that compensate or minimize
its effects must be considered to achieve satisfactory and reliable results.

More precise estimations of the uncertainty set are a possible objectives of
future works. Furthermore, new ways to estimate slip can be considered as
further research. For instance, a proper approach can be to use one camera
in order to estimate the actual velocity of each track.



Chapter 3

Localization of Tracked Robots in
Planar Off-Road Conditions

This chapter presents the design of a visual-odometry-based lo-
calization technique. Typical implementation of visual odometry
with one camera has been improved using another camera to es-
timate the robot orientation (visual compass approach). Compa-
risons with typical wheel-based odometry, through physical expe-
riments, show the suitability of the proposed strategy for tracked
mobile robots.

3.1 Introduction

Robot localization is defined as the process in which a mobile robot deter-
mines its current position and orientation relative to an inertial reference
frame [124]. In the context of off-road mobile robots, localization techniques
have to deal with the particular features of off-road conditions, such as a
noisy environment (vibrations when the robot moves, disturbance sources,
etc.), changing lighting conditions, high degrees of slip, and other inconve-
niences and disturbances.

One of the most popular solutions for the mobile robotics community is
wheel-based odometry (or odometry) [14, 74]. This technique is considered as
relative or local localization, that is, robot location is incrementally calculated
from an initial point. Odometry employs simple geometric equations (mobile
robot kinematics) with wheel encoders that provide angular velocities of the
wheels. Then, the position and orientation is calculated by integrating these
velocities. The main drawbacks of using wheel-based odometry are: (i) since
encoder measurements are integrated, the noise is also integrated, and thus
it causes a unbounded growth of the error along the time and the distance;
(ii) it is based on the assumption that wheel revolutions can be converted
into linear displacement relative to the terrain where, such as discussed in
Chapter 2, and this assumption is limited on slip conditions (see equation
(2.4)).
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An attractive alternative is the use of absolute or global techniques. These
techniques determine the position of the robot with respect to a global re-
ference frame, for instance, using beacons or landmarks [30, 118]. The most
popular technique is GPS, which is based on satellite signals to determine the
absolute position of an object on the Earth (longitude, latitude and altitude)
[51]. The main drawbacks of absolute techniques are: (i) it requires a costly
installation of the beacons/markers on the area where the robot operates,
(ii) the mobile robot can only navigate over the area in which landmarks
are located. Furthermore, the particular problems related to GPS are: (i)
the satellite signal is lost in partially covered areas (nearby trees, buildings,
etc.); (ii) it cannot be used in covered areas (greenhouses, mines, etc.) or in
space exploration [51]; (iii) consumer-grade GPS provides poor accuracy (se-
veral meters). Although more expensive solutions such as Differential GPS
(DGPS) or Real-Time Kinematics GPS (RTK-GPS) improve significantly
that accuracy.

On the other hand, techniques that estimate robot location using visual
information (images) are being successfully applied to off-road mobile robots,
especially in space robotic exploration missions [23, 63, 92, 105]. One of the
most popular approaches is visual odometry, which is defined as the incre-
mental online estimation of robot motion from image sequences using an
on-board camera [19, 91].

Finally, many efforts are being developed at the probabilistic estimation
techniques field. In the mobile robotics context, probabilistic techniques are
based on estimating the location of a robot combining measurement data
from different sources, and prior knowledge about the system and measuring
devices. The most representative approaches are based on the Kalman filter
[93, 131] and the Particle filter [123]. Particularly, these techniques have been
fruitfully applied to the Simultaneous Localization and Mapping problem1

(SLAM) [29, 122, 123].
This chapter describes the work related to the application of a visual odo-

metry approach (combined with visual compass) to off-road mobile robot
localization. In particular, to tracked mobile robots operating in planar off-
road environments. Comparisons of this strategy with typical localization
techniques, through physical experiments using a real tracked robot, show
the satisfactory behaviour of the proposed scheme.

This chapter is organized as follows. In Section 3.2, the localization strategy
based on visual odometry is detailed. Physical experiments are discussed in
Section 3.3. Finally, Section 3.4 is devoted to conclusions and future research.

1 The SLAM problem deals with starting from an arbitrary initial point, a mobile
robot should be able to autonomously explore the environment with its on-board
sensors, gain knowledge about it, interpret the scene, build an appropriate map,
and localize itself relative to this map [118].



3.2 Localization Using Visual Odometry 37

3.2 Localization Using Visual Odometry

This section presents the work related to the application of a visual odometry
approach to estimate the location of a mobile robot operating in off-road
conditions.

Visual odometry is defined as the incremental online estimation of robot
motion from an image sequence by an on-board camera [19, 91]. Roughly
speaking, it is based on estimating the robot motion through the displacement
of the objects found in two consecutive acquired images. The most important
features of visual odometry in mobile robotics are:

• It is a straightforward technique. Visual odometry follows the same con-
cepts of simplicity and practicality of wheel-based odometry. In fact, simple
principles of odometry can be successfully applied to other robot configu-
rations where wheel encoders are not available, such as humanoid robots
[110] or unmanned aerial robots [102].

• A consumer-grade camera can replace a typical expensive sensor suite
(encoders, IMU, GPS, etc.). It is really advisable for low-cost robots and/or
with a limited payload.

• It avoids typical multi-path interference problems as in ultrasonic sensors
and low-cost infrared sensors [19].

• For robots operating in indoor environments, visual odometry is significan-
tly more practical and functional than other localization systems [3, 19].

• For robots in outdoor scenarios, slip effect is minimized, since visual in-
formation gives the actual robot velocity [2, 50].

The main limitations related to visual odometry are:

• Similar to wheel-based odometry, the robot location is integrated, and thus
it will lead to error growth along time and distance.

• The visual odometry success depends highly on the light and imaging
conditions (i.e., terrain appearance, shadows, camera parameters, etc.).
Visual odometry can fail in dark or bad illuminated environments.

• It demands a middle/high computation cost, so appropriate computation
resources must be employed.

• If the environment is completely featureless, the technique can fail. On
uniform soils, such as checkerboard-type, visual odometry can also fail,
since different places will produce similar images.

• If the mobile robot moves at high velocities (> 1 [m/s], in the particular
case of this book) blur phenomenon can corrupt the images, which can
lead to an unsuccessful result. This point can be minimized by selecting a
camera with a proper exposure time.

Generally, there are two ways to estimate the location of a mobile robot
using the visual odometry paradigm. The most popular method is called
optical flow [85, 86, 91] (see Figure 3.1a). It is based on tracking distinctive
features between successively acquired images [85]. In this case, an image is
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matched with the previous one by individually comparing each feature on
them and finding candidate matching features based on Euclidean distance
of their feature vectors. Afterwards, the velocity vector between these pairs of
points is calculated and the displacement is obtained by using these vectors
[85]. Optical flow is especially advisable for textured scenarios, such as urban
and rough environments [23, 63, 115]. This approach has been tested using
single [102], stereo [90], and omnidirectional cameras [115].

A slightly different approach is the template matching method [17, 44, 73]
(see Figure 3.1b). It avoids the problem of finding and tracking features,
and instead it looks at the change in the appearance of the world (images).
For that purpose, it takes a template or patch from an image and tries to
match it in the previous image. The main difference with optical flow is that
now, no identification or tracking of features is involved, and there is no
need to measure image velocities at different locations [119]. Appearance-
based method has been successfully applied employing single [65, 104] and
omnidirectional cameras [73].

Figure 3.1 shows two examples of the application of optical flow and tem-
plate matching approaches. In the case of Figure 3.1a, the squares indicate
the tracked features and the lines show the motion of these features from
the previous image. In Figure 3.1b, the blue rectangle means the template in
the previous image, the black rectangle is the result of the matching process
with the previous image, and the green line indicates the pixel displacement
between both images.

(a) Optical flow ([105]) (b) Template matching

Fig. 3.1 Example of visual odometry approaches: optical flow and template mat-
ching

Now, the most proper visual odometry implementation for off-road con-
ditions is analyzed. The main difference between optical flow and template
matching approaches is that when the scene is low textured, the number of
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detected and tracked features (single patterns) is low, what can lead to poor
accuracy of motion estimate [63]. This fact means that optical flow can fail
on featureless scenarios (such as sandy soils, urban floors, etc.) where ima-
ges with few high gradients are grabbed. On the other hand, the template
matching approach works properly in low texture scenarios, since a larger
pattern (template) is employed, and, therefore, the probability of a success-
ful matching is increased [73].

Previous discussion motivates why the template matching method has been
selected in this book. However, it is important to remark that if the mat-
ching process fails (false matches), the robot motion estimate can become
degraded. In order to minimize this shortcoming, especially undesirable esti-
mating robot orientation, a second camera is added. This solution is inspired
by two recent works, where a method called visual compass was proposed to
estimate rotational information from omnidirectional cameras [73, 115]. Vi-
sual compass technique is based on the use of a camera mounted vertical to
the ground on a mobile robot. Then, a pure rotation on its vertical axis result
in a single column-wise shift of the appearance in the opposite direction. In
this way, the rotation angle is retrieved by matching a template between the
current image (after rotation) and the previous one (before rotation) [115].

In conclusion, the proposed localization strategy takes as input two image
sequences. One image sequence comes from a single camera pointing at the
ground under the robot (“groundcam”), and the second one comes from a
camera looking at the environment (“pancam”). The former is employed to
estimate the robot longitudinal displacement (Subsection 3.2.2), and the lat-
ter is employed to estimate the robot orientation (Subsection 3.2.3).

3.2.1 Template Matching

In this subsection, the mathematical formulation of template matching is
briefly described.

The template matching method is defined as the process of locating the
position of a sub-image inside a larger image. The sub-image is called the
template and the larger image is called the search area [17, 44]. This process
involves shifting the template over the search area and computing the simi-
larity between the template and a window in the search area. This is achieved
by calculating the integral of their product. When the template matches, the
value of the integral is maximized.

There are several methods to address the template matching, see [16], [113],
for a review. Here, the cross-correlation solution has been implemented2. It

2 A trade-off was realized comparing different methods (e.g. square difference mat-
ching method, correlation matching method, etc.) using images from physical
experiments. The best result (fewer false matches) was obtained using the cross-
correlation approach.
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is based on calculating an array of dimensionless coefficients for every image
position (s, v) as [17, 113]

R(s, v) =

h−1∑

i=0

�−1∑

j=0

(
T (i, j)− T̄ (i, j)

)(
I(i + s, j + v)− Ī(i+ s, j + v)

)
,(3.1)

where h ∈ R
+,  ∈ R

+ are the height and the width of the template,
respectively, T (i, j) and I(i, j) are the pixel values at location (i, j) of the
template and the current search area, respectively, and T̄ (i, j) and Ī(i, j) are
the mean values of the template and current search area, respectively. These
mean values are calculated as

T̄ (i, j) =
1

(h)

h−1∑

a=0

�−1∑

c=0

T (a, c), (3.2)

and

Ī(i+ s, j + v) =
1

(h)

h−1∑

a=0

�−1∑

c=0

I(a+ s, c+ v). (3.3)

Now, in order to avoid changes in the brightness between the template and
the current image, every correlation coefficient is normalized [16]. For that
purpose, it is divided by the standard deviation

N(s, v) =

√
√
√
√

h−1∑

i=0

�−1∑

j=0

T(i, j)2 · I(i + s, j + v)2, (3.4)

where T(i, j) = T (i, j)−T̄(i, j) and I(i+s, j+v) = I(i+s, j+v)−Ī(i+s, j+v).
Finally, the normalized cross-correlation becomes

R̃(s, v) =
R(s, v)

N(s, v)
. (3.5)

Notice that the value of R̃ changes between −1 and +1, and the closer R̃
is to +1, the more similar the template and the current image will be. For
that purpose, the best match is defined as

R̃M = max
(
R̃(s, v)

)
, (3.6)

where R̃M is the maximum value of the array R̃ and (sM , vM ) is the position
of that point.
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3.2.2 Estimating Robot Displacement

This subsection focuses on the estimation of the robot longitudinal displace-
ment using the images taken by the camera pointing at the ground.

Fig. 3.2 Visual Odometry based on Template Matching using a camera pointing
at the terrain under the robot

As shown in Figure 3.2, at sampling instant t = τ − 1, the robot takes
a picture of the ground under it. At the following sampling instant t = τ ,
the template matching approach is employed to find a defined template from
the previous image in the current image. Finally, the pixel displacement (Δs,
Δv) is calculated as

Δs = T (̃i)− iM , (3.7)

Δv = T (j̃)− jM ,

where Δs ∈ R, Δv ∈ R are the longitudinal and lateral pixel displacements
from the image sequence taken by the camera pointing at the ground, T (̃i, j̃)
is the top left corner of the template (rectangle region centered at previous
image), and (iM , jM ) is the point of maximum correlation. Notice that, for
notational convenience, the time dependence on previous variables has been
omitted.

Afterwards, camera units must be translated to physical world units using
the camera calibration parameters,

Δx = Δs
Z

fg
x
,

Δy = Δv
Z

fg
y
, (3.8)
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where Δx ∈ R, Δy ∈ R are the camera longitudinal and lateral displacements
in physical world units, respectively, Z ∈ R

+ is the height of the camera
above ground (see Remark 3), and fg

x ∈ R, fg
y ∈ R are the focal lengths of

the camera pointing at the ground.

Assumption 3. It is assumed that the robot is moving on a predominant flat
ground and sinkage does not change, what means that the distance between the
camera and the ground is almost constant. Notice that, on a rougher surface,
an IMU sensor or a laser sensor should be used to estimate this distance
[104]. Recently, a novel approach consists in the use of telecentric cameras
[101]. Those cameras are electronically modified in such a way that the lens
keep the same field of view, regardless of the distance between the camera and
the ground.

Finally, the location of the robot along the time is given by (see Remark 5)

xvo(k) = xvo(k − 1) +Δx(k) cos
(
θvo(k)

)
,

yvo(k) = yvo(k − 1) +Δx(k) sin
(
θvo(k)

)
, (3.9)

where [xvo yvo]T ∈ R
2 is the robot position. The estimation of the robot

orientation (θvo ∈ R) is addressed in the following subsection.

Remark 5. Notice that the robot orientation can be calculated using the in-
formation from the camera pointing at the ground. In this case, it is obtained
as [104]

Δθ̂ = arctan(Δy, l), (3.10)

where Δθ̂ ∈ R is the increment in robot orientation, and l ∈ R
+ is the

distance between the camera and the robot centre (see Figure 3.2). Then, the
orientation at each sampling instant is given by

θ̂vo(k) = θ̂vo(k − 1) +Δθ̂(k). (3.11)

However, the resulting orientation is extremely sensitive to systematic
errors, such as inaccurate distance between the camera and the ground plane,
inaccurate distance between the camera and the centre of the robot, and false
matches. These drawbacks produce that orientation becomes less and less ac-
curate at each step [115]. In order to minimize such effects, the visual compass
technique is employed in this book.

3.2.3 Estimating Robot Orientation: Visual Compass

The application of the visual compass technique to calculate the robot orien-
tation is explained in this subsection. The visual compass approach was re-
cently presented as a new way to estimate the robot orientation using vision.
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Fig. 3.3 Visual Compass approach using a camera looking at the environment

It was firstly presented in [73], and it has been mainly applied to omnidirec-
tional camera systems [115, 120].

The visual compass technique is also based on the template matching pro-
cedure to estimate the pixel displacement between two consecutive images.
The difference is that now, a camera looking at the environment (“panoramic
view”) is employed. In this way, a change in the robot orientation means a
unidirectional pixel displacement between two consecutive images (see Fi-
gure 3.3). The procedure consists of firstly obtaining the maximum corre-
lation point between both images using (3.6), and secondly, calculating the
pixel displacement (only in one direction) between the top left corner of the
template and the maximum correlation point, that is,

Δu = T (̃i)− iM , (3.12)
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where Δu ∈ R is the pixel displacement from the image sequence taken by
the camera looking at the environment. Finally, the rotation of the robot,
Δθ ∈ R, supposing that the camera is mounted on the centre of the robot, is
given by

Δθ = arctan(Δu, fe
x), (3.13)

fe
x ∈ R being the focal length of the camera looking at the environment.
Then, the orientation along time is given by

θvo(k) = θvo(k − 1) +Δθ(k). (3.14)

Remark 6. Notice that the book is based on using a TMR that can turn on
the spot or with almost zero translations. This leads to consider that there
is no translational motion at turns or it is close to zero, what implies that
parallax effects are negligible [115].

3.2.4 Localization Approach Combining Visual
Odometry with Visual Compass

Summing up, the localization scheme presented here based on visual odome-
try and visual compass operates as follows:

1. Acquire a pair of consecutive frames from each camera.
2. Select the template from images taken at time t = τ − 1.
3. Match the template with the current image (t = τ) by using (3.1). Nor-

malize the result by using (3.5).
4. Estimate the pixel displacement between the template and the maximum

correlation point with (3.7).
5. Translate from camera plane to world plane using the camera calibration

parameters by means of (3.8).
6. Compute the rotation angle using the visual compass method using (3.13).
7. Estimate the robot location using translation information given by the

camera pointing at the ground with (3.9), and the rotation angle given by
the camera looking at the environment with (3.14).

8. Repeat from step 1.

3.2.5 Computational Aspects of Template Matching

This subsection discusses some experiments carried out to select the most
appropriate template/search area size for a satisfactory performance of the
correlation algorithm and the employed computation time.

The main drawback of template matching approach is its computation
cost, since the template has to be slid over the whole search area. In the
general case, the detection of a single template Tm×m within a image In×n
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by means of a matching process is O = m2(n−m+1)2 [17]. For that reason,
two important issues to be investigated are the template size and the search
area size.

Notice that here, the possibility of speeding up the matching process from
an algorithmic point of view is not being considered. This subsection only
deals with determining the template/search area size to reach a trade-off
between performance and computation time.

Speeding up the Matching Process by Reducing the Image Size

Firstly, the proper template size is studied, and later on, a way to reduce the
search area is analyzed. In this way, the template is obtained as a reduced
squared window of the image taken at sampling instant τ − 1. The template
origin has been established as the image centre, and the top left corner of the
template is located at [104]

T q(s) =
W q

2
− T q

size

2
,

T q(v) =
Hq

2
− T q

size

2
, (3.15)

where T q(s, v) is the top left corner of the template, q refers to the images
taken by the camera pointing at the ground (q = g) and to the camera looking
at the environment (q = e), W q ∈ R

+, Hq ∈ R
+ are the width and height of

the original image, respectively, and

T q
size =

1

ρq
Hq, (3.16)

is the template size being ρq ≥ 1 a reduction factor.
Notice that the larger the template, the smaller the probability that it

is matched in the search area. That means that if a too large template is
selected, it cannot be possible to find it in the following image. On the con-
trary, the smaller the template, the higher the probability to fail into false
matches. That is, if a too small template is selected, several areas of the
following image can match with that template.

As previously commented, the second way to speed up the correlation
matching process consists in to use a reduced window of the original image
instead of the whole image. Such reduced search area is given by

Winq
w =

1

λq
W q,

Winq
h =

1

λq
Hq, (3.17)
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where Winq is the size of the new reduced image, and λq ≥ 1 is a reduction
factor. Then, the reduced image will start at the point Winq(s, v) and it will
have a size of Winq

w ×Winq
h. The top left corner of the new image is

Winq(s) = Winq
w − Winq

w

λq
,

Winq(v) = Winq
h − Winq

h

λq
. (3.18)

In this way, the computation time is decreased, since correlation process is
carried out over a smaller image, such as shown in the following subsection.

Effect of Template and Image Sizes on the Computation Time

Before carrying out physical experiments, the effect of the template and image
sizes on the computation time has been analyzed. Image sequences taken
during physical experiments are also employed here (see Section 3.3). Notice
that experiments have been carried out on a computer Intel Core 2 Duo 2.5
GHz with 3.5 GB RAM.

Figure 3.4 shows the resulting computation time of varying the template
and image sizes (“Mean” is the mean computation time of the sequence of
images and “Std” denotes the standard deviation). Here, the template and
image sizes of the image sequence employed by the visual compass method are
fixed to ρe = 4 and λe = 1.7 for (3.16) and (3.17), respectively. As observed,
larger template size (smaller ρg) implies that the computation time is lower.
When the matching process is applied over a smaller search area (larger λg)
the computation time also decreases. The computation time when images do
not have any reduction (black triangles) is also displayed. From this analysis,
the following reduction factors ρg = 3 and λg = 1.2 have been selected, since
they constitute a compromise between suitable computation time (< 0.2[s])
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Fig. 3.4 Analysis of template and image sizes on computation time (images from
camera pointing at the ground). The size of the images from the pancam is fixed
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and success in the matching process. It is important to remark that although
smaller reduction factors can be considered, these reduced search areas lead
to a unfeasible matching process. That means that for the experiments carried
out in this book if smaller search areas were considered, the number of false
matches increases to unsuitable values, and robot location cannot be reliably
estimated.

Notice that, such as remarked in [104], there is another important pa-
rameter to be considered in the selection of the template size, that is, the
robot velocity. It is experienced that a smaller template size permits a high
robot velocity, and a large template size limits the robot velocity. Regarding
this issue, the images used for the experiment displayed in Figure 3.4 were
collected for a robot velocity ranged between 0.4 and 0.5 [m/s] (see Section
3.3). Nevertheless, the selected template and image sizes still work properly
for small variations of those velocities.

3.3 Results

As in previous chapter, physical experiments were carried out using the mo-
bile robot Fitorobot. Additionally, successful results using the visual odometry
approach were also obtained with the CRAB rover available at the ASL, ETH
Zürich (Switzerland), see [39].

3.3.1 Testing the Sensor Performance

From physical experiments, it was noticed that when the robot moves at ve-
locities greater than 1 [m/s] on flat terrains, blur phenomenon corrupts the
images taken by the camera pointing at the ground, see Figure 3.5a. Additio-
nally, it was observed that when the robot moves at velocities greater than 1
[m/s] on partially bumpy terrains, a similar effect corrupts again the images,
see Figure 3.5b. Blur phenomenon occurs when an image is captured while the
camera is moving during the exposure time or shutter time [110]. This phe-
nomenon constitutes a difficult issue to be removed and elaborate solutions
have to be considered to minimize its influence. For instance, in [55], authors
formulate a learning policy as a trade-off between the localization accuracy
and robot velocity. In [110], authors propose to carry out a preprocessing
step before detecting features in the image. In this book, a preprocessing of
the images, such as an enhancing filter, is not appropriate due to this would
mean to raise the computation time assigned to the vision algorithm. The
solution based on bounding the robot velocity can be successful. However, it
would entail a certain degree of conservativeness for the motion controllers.

In relation to the image shown in Figure 3.5b, it is also interesting to
remark that blur phenomenon is stressed by the vibrations affecting to the
mobile robot. It is a difficult issue to be removed, since the TMR employed for
physical experiments has a limited suspension mechanism that produces un-
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avoidable vibrations on the robot structure. In conclusion, as a first approach
in this book, visual odometry was employed when the robot was moving at
velocities less than 1 [m/s]. Nevertheless, in the physical experiments pre-
sented in this book, the robot rarely reaches velocities greater than 1 [m/s].

(a) Blur effect (flat terrain) (b) Vibrations effect (bumpy terrain)

Fig. 3.5 Images taken by the camera pointing at the ground (velocities > 1 [m/s])

Another important issue observed from outdoor physical experiments is the
problem found in environments with changing lighting conditions, which can
lead to shadows in the images taken by the camera pointing at the ground.
After analyzing many experiments, it was concluded that when there are
shadows in the images, the risk for false matches highly increases. For that
reason, this phenomenon has been deeply studied and two approaches to
minimize its effect have been proposed.

First, the position and the height of the camera pointing at the ground
were carefully studied. In this case, the camera was mounted in front of the
robot between both tracks at a height of 0.49 [m], see Figure 3.6. This distance
was obtained as a trade-off between shadow-reduction and template matching
performance, that is, higher distance leads to more features but shadows can
appear. On the contrary, shorter distance corresponds to smaller field of view
where the probability of shadows in the images is reduced. However, it can
lead to featureless images.

Secondly, a threshold filter has been tuned. It compares the current pixel
displacement with the previous ones, if the difference is greater than a thresh-
old, then the current value is considered as an outlier. In this way, these peaks
or outliers, due to false matches, are partially compensated. As shown in the
following subsection, this filter works properly, and it requires a small com-
putation time.
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Fig. 3.6 Tracked mobile robot Fitorobot during physical experiments (notice the
cameras Quickcam Sphere AF, Logitech)

3.3.2 Localization Strategies Validation

In this subsection, the physical experiments validating the localization a-
pproach presented in this chapter are discussed. To that end, the robot was
manually driven on a gravel terrain (see Figure 3.7). Notice that this is a
similar experiment site than that used in Chapter 2 (gravel soil). As evaluated
in that chapter, slip is around 6 [%].

Several trajectories were tested. In this case, three experiments are se-
lected. In the first one, the robot was driven along a squared trajectory of
approximately 55 [m] long and 20 [m] width. The total travelled distance was
close to 160 [m]. In the second experiment, the robot was driven along an
S-shaped trajectory with three parallel paths to the x-axis of 80 [m] and two
perpendicular paths of 20 [m]. The total travelled distance was close to 290
[m]. Finally, a circular trajectory is selected, the total travelled distance was
close to 65 [m].

The orientation was collected using a magnetic compass (C100, KVH,
Middletown, USA); for the vision-based localization technique, two consumer-
grade cameras were employed (Quickcam Sphere AF, Logitech, Apples,
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Switzerland). The magnetic compass has an accuracy of 0.1 [deg]. The rest
of the sensors were the same than those used in Chapter 2, that is, a DGPS,
two incremental track encoders, and a Doppler radar. The sampling period
was Ts = 0.2 [s] and the robot velocity ranged within [0.4, 0.5] [m/s]. Recall
from Chapter 2 that in this velocity range the Doppler radar as well as the
visual odometry work properly.

In the experiments, the DGPS and the magnetic compass data were consi-
dered as ground-truth for position and orientation, respectively. Notice that,
as in Chapter 2, the position obtained using the DGPS is translated to rela-
tive position. For that purpose, the global position (Latitude/Longitude) was
converted to UTM grid system [51].

For comparison purposes, a wheel-based odometry localization approach
was implemented.

Experiment 1. Squared Trajectory

In this experiment, the robot was manually driven on a sunlit illuminated
gravel terrain following a squared trajectory. The lighting conditions did not
produce any significant shadows during the experiment in this case.

Figure 3.7 shows two frames employed by the vision-based localization
technique during this experiment. The pixel displacement is marked by the
green line and the red circle, the template is labeled by the blue rectangle, and
the black rectangle means the reduced area in which the matching process is
carried out (see Subsection 3.2.5).

(a) Panoramic view (b) Ground view

Fig. 3.7 Result of template matching in the experiment site (gravel soil)

Figure 3.8a shows the resulting trajectories. It is observed that the visual
odometry with visual compass trajectory (denoted as “VO+VC”) closely
follows the ground-truth (labeled as “DGPS”), while the wheel-based odo-
metry estimate (denoted as “Odo”) diverges largely from the ground-truth,
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particularly, odometry fails at turns. The trajectory obtained using the image
sequence from the camera pointing at the ground (referred to as “VO”) to es-
timate orientation (see Remark 5) is also plotted, and it has a similar result to
that obtained using the approach combining information from both cameras
(visual odometry with visual compass). Especially remarkable is that vision-
based techniques work properly during straight-line motions and at turns.
Figure 3.8b displays the orientations, where the ground-truth is denoted as
“Compass”. Here, it is checked that the orientations obtained through visual
odometry fixes the ground-truth. The mean orientation errors are: 8.2 [deg]
for visual odometry with visual compass, 14.1 [deg] for visual odometry, and
39.37 [deg] for wheel-based odometry. In this figure, it is possible to observe
the unavoidable error growth phenomenon of odometry-based solutions, that
is, the deviation between the ground-truth and the rest of techniques increases
along the travelled distance.

0 10 20 30 40 50 60

−20

−10

0

10

20

30

Trajectories

X [m]

Y
 [m

]

 

 VO
VO+VC
DGPS
Odo

Start
End

(a) Trajectories

0 20 40 60 100 120 140 16080

0

50

100

150

200

250

300

350

270

Orientations

Traveled distance [m]

O
rie

nt
at

io
n 

[d
eg

]

 

 

VO
VO+VC
Compass
Odo

(b) Orientations

Fig. 3.8 Experiment 1. Squared trajectory

The error between each localization method and the ground-truth is also
analysed quantitatively. In this case, the Euclidean distance between the
initial and the latest position of the robot in the four parts of the trajectory is
calculated, that is, the two parallel paths to the x-axis (Part 1 and Part 3) and
the two perpendicular ones (Part 2 and Part 4). It is obtained that the visual
odometry with visual compass approach achieves the smallest error. The
other vision-based technique also achieves an admissible error. The relative
mean errors with respect to the total travelled distance are: 1.45 [%] for visual
odometry with visual compass, 2.33 [%] for visual odometry alone, and 16
[%] for wheel-based odometry.

In Figure 3.9, the longitudinal (Δs) and lateral (Δu) pixel displacement
values related to the visual odometry with visual compass approach are
shown. Notice that values close to zero mean small displacements (low velo-
city), and high values mean large displacements (high velocity). In this plot,
it is observed that the points are aligned in two directions, being this effect
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due to the pixel displacements during straight motions, Δs component, and
during turns, Δu component. It is checked that template matching is highly
robust with few outliers (false matching or unsuccessful matching). It is im-
portant to point out three interesting conclusions from this plot. Firstly, since
the robot always turns in the same sense (to the left side), lateral pixel dis-
placement (Δu) is also aligned in one direction. Secondly, when the robot is
turning it does not move forward, since, as observed, Δs is close to zero at
turns. Finally, note that in the range Δs = [−20,−40] [pixel], Δu is zero,
what means the moment in which the robot is stopping before turning.
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Fig. 3.9 Experiment 1. Lateral and longitudinal pixel displacements (VO+VC)

Experiment 2. S-shaped Trajectory

In this experiment, a longer trajectory, in which the robot changed several
times of direction, was tested. Furthermore, in some parts of the experiment
site, the lighting conditions produced shadows that affected to the perfor-
mance of the vision-based localization strategies.

Figure 3.10a shows the resulting trajectories. It is observed that the vi-
sual odometry with visual compass trajectory does not follow accurately the
ground-truth mainly for one reason. As checked during the first perpendicular
path to the x-axis and the second parallel path, the trajectory is shorter than
the ground-truth. This fact is due to false matches obtained from the camera
pointing at the ground caused by shadows (see Figure 3.11b). This erroneous
behaviour is worst in the case of visual odometry alone, since, now, longitu-
dinal displacement and orientation are obtained from the camera pointing at
the ground. The largest deviation is obtained during the first perpendicular
path to the x-axis. Again, wheel-based odometry diverges largely from the
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ground-truth, particularly, odometry fails at turns. In Figure 3.10b, the orien-
tations are plotted with respect to the travelled distance. Here, the erroneous
behaviour of the visual odometry approach during the first parallel path to
the x-axis is noticed. The visual odometry with visual compass approach
estimates the orientation properly and follows the ground-truth. The mean
orientation errors are: 4.8 [deg] for visual odometry with visual compass, 10.2
[deg] for odometry, and 148.2 [deg] for visual odometry. The mean orientation
error for the case of visual odometry cannot be considered as a comparable
value, since it has a large standard deviation.
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Fig. 3.10 Experiment 2. S-shaped trajectory

The error between each localization technique and the ground-truth is also
obtained. In this case, the Euclidean distance between the initial and the
latest position of the robot in five parts is calculated, that is, three parallel
paths to the x-axis (Part 1, Part 3 and Part 5) and two perpendicular ones
(Part 2 and Part 4). As expected, the visual odometry with visual compass
approach obtains an admissible error except during the second and the third
paths. The relative mean errors with respect to the total travelled distance
are: 2.46 [%] for visual odometry with visual compass, 7.60 [%] for odometry,
and 19.50 [%] for visual odometry.

In Figure 3.11a, the longitudinal (Δs) and lateral (Δu) pixel displacement
values are shown. In contrast to the previous experiment, now, the pixels
related to the lateral displacement (Δu) are aligned in two directions (right
and left turns). Notice that the turns to the right side were carried out at
higher linear velocity than the turns to the left side. In this case, there are
some outliers, when the robot moved in straight line (Δs < −40 [pixel]), that
can explain the small deviation obtained at the end of the first parallel path
to the x-axis (see Figure 3.10). On the other hand, in Figure 3.11b, the lon-
gitudinal pixel displacements (Δs) with respect to the acquired images are
displayed. As noticed, during the samples [1200, 1600], there is an erroneous



54 3 Localization of Tracked Robots in Planar Off-Road Conditions

behaviour (false matches). This behaviour explains why the trajectories ob-
tained with the vision-based approaches are shorter than the ground-truth
during the first perpendicular path to the x-axis. The false matches found
in the interval [2300, 2800] explain why the trajectories are shorter than the
ground-truth during the second parallel path to the x-axis.

A deeper understanding of the erroneous behaviour of the visual odometry
approach is obtained analyzing the Figure 3.12. Recall that, for the case of
visual odometry alone, the robot orientation comes from the lateral pixel
displacement obtained from the camera pointing at the ground (see Remark
5). As checked in Figure 3.12a, many outliers appear in the Δv component,
compare it with the visual compass pixel displacement (Δu) obtained from
the camera looking at the environment in Figure 3.11a. From Figure 3.12b,
notice that these outliers occur within the two intervals in which false matches
appeared due to shadows (see Figure 3.11b).
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Fig. 3.11 Experiment 2. Template matching using both cameras

Experiment 3. Circular Trajectory

Finally, a circular trajectory was tested in order to check the performance
of the proposed localization strategies estimating the robot orientation. The
most challenging issue about this experiment is that the robot is always turn-
ing and, hence, there are always shadows in the images obtained from the
camera pointing at the ground. Furthermore, this circular trajectory high-
lights the main inconvenience of odometry-based localization techniques, that
is, the integration of the orientation from the starting point which lead to
inaccurate robot localization for long-range circular trajectories.

In Figure 3.13a, the orientations obtained during the test are shown with
respect to the travelled distance. As advised, the typical effect of odometry-
based solutions is observed. Notice that the orientation obtained using the
odometry-based techniques diverges from the ground-truth (recall that the
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Fig. 3.12 Experiment 2. Template matching process using Groundcam

experiments were carried out in open-loop). However, it is interesting to re-
mark that acceptable behaviour of the orientation obtained using the visual
compass technique. For instance, note that outliers and mismatches highly
affect to the estimated orientation using only the camera pointing at the
ground. The mean errors between the ground-truth and orientation are: 15.02
[deg] for visual odometry with visual compass, 40.43 [deg] for visual odome-
try, and 107.84 [deg] for wheel-based odometry.
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Fig. 3.13 Experiment 3. Circular experiment

As observed in Figure 3.13b, the template matching result for the camera
pointing at the ground (denoted as “Groundcam”) suffers from outliers and
false matches, especially at the end of the experiment. This explains the
behaviour observed in Figure 3.13a. The images employed by the visual com-
pass approach (labeled as “Pancam”) are not affected by shadows and, hence,
there are no significant outliers during the matching process.
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3.4 Conclusions

In this chapter, the application of visual odometry based on template mat-
ching to off-road mobile robots is presented. Standard visual odometry has
been improved using the visual compass method to calculate the robot
orientation. This strategy has been implemented using two consumer-grade
monocular cameras. Physical experiments have confirmed the appropriate
behaviour of the proposed scheme. As checked in these experiments, the low
computation time (< 0.2[s]) will permit to use this localization technique in
a robot navigation architecture with a low computation burden. The point
related to reduce the size of the search area during the matching process can
be considered as an incipient approach to decrease the computation time.
However, a best improvement consists in to use the robot motion to reduce
accordingly the image size. A multi-objective problem (success of matching
process, reduction of template size, reduction of image size) for this issue will
be also considered for future works. The problem with shadows and, hence,
false matches, constitutes the most important shortcoming of the vision-based
strategies. In this book, a deep analysis has been carried out regarding sol-
ving this issue. It has been selected a proper downward camera position and
a threshold filter. Nevertheless, three ways to improve both solutions will be
studied: (i) new positions for the camera pointing at the ground, for instance,
just below the robot as in [27]; (ii) new filters and new matching procedures
that minimize the effect of shadows and do not increase the computation
burden. The problem with blur effect will be treated considering a better
camera and other mounting devices; (iii) combining current visual-odometry
data with other “localization” techniques through a probabilistic approach.

In conclusion, from physical experiments, the visual odometry strategy is
considered as a satisfactory localization technique for middle-size trajectories
and for uniform lighting conditions. An important point about this option
is that two consumer-grade cameras can replace expensive sensors, such as
the Doppler radar, the magnetic compass and the encoders. This point can
be really advisable for future commercial or low-cost projects. Additionally,
visual information can also be used to estimate slip, by using the methodology
proposed in Chapter 2.



Chapter 4

Adaptive Motion Controllers for
Tracked Robots

This chapter presents two slip compensation control strategies.
The first strategy updates feedback gains taking into account the
estimated slip. The second one is an adaptive control strategy for-
mulated using LMI. In the latest one, asymptotic stability, and
state and inputs constraints fulfillment is ensured. The reported
results confirm that the slip compensation motion controllers are
suitable for tracked robots and improve the performance of similar
schemes with no slip compensation.

4.1 Introduction

Mobile robots must have effective motion controllers that handle the pro-
perties of the surrounding environment. In this context, motion control is
defined as a layer in the navigation architecture that generates the proper
control actions to successfully steer the mobile robot through a desired trajec-
tory. Particularly, motion controllers should be designed taking into account
the robot-terrain interactions, such as the slip phenomena. In this sense, the
motion control approaches for mobile robots in off-road conditions are usually
achieved from two points of view.

On the one hand, some approaches try to avoid slip generating control
signals such that the soil never fails1. For instance, in [71], a torque controller
is presented. The basic idea of the control algorithm is to set torques for
appropriately maximizing traction. In order to measure these torques, novel
wheel ground contact angle sensors are built. A wheel-ground contact force
control law is discussed in [57]. Authors define an optimization criterium to
maximize traction and to minimize power consumption, in such a way that
soil failure is avoided. A model-predictive trajectory-tracking controller is

1 To avoid terrain failure and the resulting wheel/track slip, the control algorithm
should seek to maximize the tractive force in a way which that force does not
violate the terrain traction constraints [58].
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presented in [67]. The proposed scheme includes velocity and acceleration
constraints to prevent the mobile robot from slip. In the work [2], authors
propose an approach for slip prediction from a distance for wheeled robots
using visual information. Using that information, the robot can avoid entering
into slip terrains.

On the other hand, some control strategies adapt the control signals de-
pending on the estimated slip, and, hence, compensate its effect. This is the
most general case, since usually slip can never be fully avoided. For instance,
in [22], [78], a path tracking controller is designed. That controller uses an
extended kinematic model that permits to take into account wheel slip online.
Additionally, a predictive algorithm is developed in order to address delays
induced by steering actuators and also compensating for transient overshoots
in curves. The work [88] proposes a kinematic approach to improve motion
control and pose estimation of a TMR. In this case, the robot location is
estimated determining the ICR positions, which depend on the track-soil in-
teractions. In the work [62], two different control approaches to compensate
for three types of slip, namely, the vehicle sideslip, longitudinal and lateral
slips are presented. One is a model-based feedforward control and the second
one is a sensor-based feedback control. The paper [50] shows a path following
controller that compensates for slip modifying appropriately the velocities
sent to the wheels. In this case, slip is calculated as the difference between
the Kalman filter position estimate and the kinematic estimate. The Kalman
filter combines data from an IMU sensor and visual odometry.

Therefore, from the previous analysis, it can be concluded that the con-
trol strategies dealing with slip are grouped into those avoiding the slip
phenomenon and those others trying to compensate it. The control laws
that avoid the slip by limiting the velocity/acceleration of wheels or tracks
[67, 87, 109], can become unsuitable in practice. The reason is that off-road
terrains are intrinsically loose, producing a non-controllable slip, that is, the
robot will slip although velocity and acceleration are limited. Generally, in
the case of the approaches that try to avoid slip, the control actions come
from complex dynamic models with numerous parameters that are difficult
to be measured online. Furthermore, the control actions can become too con-
servative.

Hence, this chapter presents two new control techniques for the second
approach where the slip is estimated and used in the control law to compen-
sate its effect. The first one is an adaptive linear feedback controller using
dynamic feedback linearization and based on a modification of the well-known
linear feedback controller described in [21, 64]. The second one is an adaptive
control strategy formulated using Linear Matrix Inequalities (LMI). Both
approaches have been tested using a tracked mobile robot.
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Note that, LMI have an extensive application in the field of automatic
control, involving robust and optimal control strategies [15, 49, 69]. LMI-
based solutions have also been satisfactorily applied in mobile robotics. For
instance, in [11], a feedback path controller for an articulated mining vehicle
based on LMI techniques to guarantee stability of the closed-loop system is
proposed. In [135], a robust tracking problem of a WMR subject to non-
holonomic constraints and input constraints is discussed. In the framework
of LMI, the suggested tracking scheme is formulated as an online controller,
which is obtained solving a constrained H∞ control law. The work [89] shows
a method for motion planning of mobile robots. The free configuration space
is decomposed into Delaunay triangles, and an optimum channel from initial
to goal configurations is found by solving an LMI system. Backing control
of simulated mobile robots with multiple trailers is presented in [121]. LMI
are used to solve the problem of finding stable feedback gains and a common
Lyapunov function.

This chapter is organized as follows. Section 4.2 concerns with the slip
compensation adaptive controller using dynamic feedback linearization. In
Section 4.3, the adaptive controller using LMI is described. In Section 4.4,
the performance of the proposed control approaches is shown through phy-
sical experiments. Finally, Section 4.5 presents some conclusions and future
research.

4.2 Slip Compensation Adaptive Controller Using
Dynamic Feedback Linearization

Let us consider the well-known linear control law presented in [21], [64]

[
u′
1(t)

u′
2(t)

]

=

[−κ1(t) 0 0
0 −κ2(t)sign(v

rf (t)) −κ3(t)

]
⎡

⎣
ex(t)
ey(t)
eθ(t)

⎤

⎦ , (4.1)

where κi ∈ R are the time-dependent feedback gains, and sign(·) is the sign
operator. Notice that, the trajectory tracking error model (2.22) is used, and
that e = [ex ey eθ]

T is the state vector, and u′ = [u′
1 u′

2]
T is the input

vector.
Replacing (4.1) into (2.22), the closed-loop system becomes

ė(t) =A′
cl(t)e(t)=

⎡

⎣
−κ1(t) ωrf (t) 0

−(ωrf (t)− ϑ(t)
)

0 vrf (t)
0 −κ2(t)sign

(
vrf (t)

) −κ3(t)

⎤

⎦e(t). (4.2)
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The characteristic polynomial of the closed-loop system is given by

det
(
sI3 −A′

cl(t)
)
=det

⎛

⎝

⎡

⎣
s+ κ1(t) −ωrf(t) 0(

ωrf (t)− ϑ(t)
)

s −vrf(t)
0 κ2(t)sign

(
vrf (t)

)
s+ κ3(t)

⎤

⎦

⎞

⎠ ,

where s is the Laplace-domain variable and det(·) means the determinant
operator. Notice the dependence on time of closed-loop matrix A′

cl, it means
that equation (4.3) is defined for all the possible values of matrix A′

cl. Solving
the determinant and choosing κ1 = κ3 [21], the characteristic polynomial
follows as

det
(
sI3 −A′

cl(t)
)
=
(
s+ κ1(t)

)(
s
(
s+ κ1(t)

)
+

+κ2(t)sign
(
vrf (t)

)
vrf (t) +

(
ωrf(t)

)2 − (ϑ(t)ωrf (t)
))

. (4.3)

Supposing that the closed-loop system dynamics is a third-order system
of the form [21]

(s+ 2ξα)(s2 + 2ξαs+ α2) = 0, (4.4)

where ξ ∈ R
+ and α ∈ R

+ are the damping factor and natural frequency,
respectively. Now, equaling (4.4) to (4.3), the feedback gains are defined as

κ1(t) = 2ξ
((

ωrf(t)
)2

+ β
(
vrf (t)

)2
) 1

2

, (4.5)

κ2(t) = β | vref (t) | +ωrf(t)ϑ(t), (4.6)

κ3(t) = 2ξ
((

ωrf(t)
)2

+ β
(
vrf (t)

)2
) 1

2

, (4.7)

where α =
((

ωrf(t)
)2

+ β
(
vrf (t)

)2
) 1

2

with β > 0, β > 0 and ξ > 0 are

constants experimentally tuned, and | · | denotes the element-wise absolute
value. Notice that, equations (4.5)-(4.7) differ with respect to those obtained
in the original formulation [21] due to the presence of ϑ variable into equation
(4.6). In this sense, κ2 is updated online based on the slip estimation and,
thus, compensating its effect.

The main features of this controller are:

• It constitutes a straightforward extension of the well-known linear feedback
control law [21, 64, 106], but now, slip explicitly appears in the formulation
of the feedback gains. Thus, the control law adapts to the current slip.

• Following the trajectory tracking paradigm, the location (position and
orientation) and velocity of the robot are controlled. In the path tracking
approach only the steering motion of the robot is handled.
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• Efficient real-time execution, since this control strategy demands a really
small computation load. This supposes that small sampling rates can be
reached.

On the other hand, the main limitations of the proposed control approach
are:

• It does not take into account state and input constraints. This means
that it can produce control signals that cannot be reached by actuators
or it may lead to large errors. Mapping constraint approach should be
considered to face this issue.

• Stability is not ensured.

In order to improve these inconveniences, other control strategies have been
designed in this book. These control strategies are presented in the following
section and in Chapter 5.

4.3 Slip Compensation Adaptive Controller Using an
LMI-Based Approach

This section focuses on the synthesis of an adaptive control law that guaran-
tees asymptotic stability subject to state and input constraints and varying
dynamics. This controller uses the discrete-time linear time-varying trajec-
tory tracking error model defined in (2.26). The objective is to determine an
adaptive control law and a Lyapunov function guaranteeing the asymptotic
stability of the closed-loop system. This objective is formulated in terms of
an optimization problem, where constraints are formulated using LMI. The
motivation to use LMI in the convex optimization problem is that such opti-
mization problem can be solved in polynomial time using powerful algorithms
that rapidly compute the global optimum [69]. Once the optimization pro-
blem is solved, the definite positive matrix P , which determines the Lyapunov
function, is obtained. Furthermore, a set of feedback gains composing the con-
trol law are calculated. Finally, these feedback gains are combined online to
produce the most proper gain according to the system realization.

The control strategy is designed to satisfy the following specifications:

• Adaptivity. The control has to fulfill the specifications for any admissible
realization of the matrix Aγ in model (2.26) (see Remark 3, Chapter 2).
For that reason, a feedback gain is designed for any extremal realization of
the linear system, such that the quadratic function is a common Lyapunov
function. The set of controllers induces a time-varying feedback gain.

• Asymptotic stability. It is achieved by means of a quadratic Lyapunov
function, that is, a positive definite function decreasing along the trajec-
tories of the closed-loop system.
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• Performance. The quadratic Lyapunov function provides an upper bound
on the cost-to-go as close as possible to the optimal Linear Quadratic Reg-
ulator (LQR) cost. Recall that, with cost-to-go, the sum of the stage cost
from the present to the infinite time is considered. This solution provides
a cost-to-go function, which is an overbound of the optimal LQR one. The
objective of the optimization problem is to minimize such overbounding
function, in order to make the cost-to-go as close as possible to the optimal
one, i.e., the LQR cost.

• Input and state constraints fulfillment. This requirement is guaranteed
through the determination of an invariant set [12], i.e., a set in which the
system state can be confined by the control law. An ellipsoidal invariant
set is computed ensuring constraints satisfaction and providing a feasibility
region for the controller.

• Performance region. A target set is defined where the performance is con-
sidered. The objective is that the controller obtained solving the optimiza-
tion problem has higher performance inside this set, which is the region of
the state space in which the system is confined in practice.

• Efficient real-time execution. Once the feedback gains have been calculated
for each extremal system realization, it is sufficient to solve an online linear
programming problem in order to obtain the stabilizing control law. This
fact supposes that the control strategy detailed here is suitable for mobile
robotics applications, where low sampling rates are employed.

The suggested control scheme is summarized in Figure 4.1. First, an offline
optimization problem that generates a set of feedback gains is solved, one gain
for each extreme realization of the system dynamics. The constraints of that
optimization problem are formulated in terms of LMI ensuring asymptotic
stability, input and state constraints fulfillment, and location of the perfor-
mance. Afterwards, a feedback control gain is determined online depending

Fig. 4.1 Control scheme for the adaptive control strategy using LMI
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on the current system realization. This adaptive control gain is obtained as
a convex combination of the previously determined gains. Finally, the cons-
traints mapping procedure addressed in Chapter 2 (Remark 4) is employed
to generate the set-points to each track.

4.3.1 Problem Statement

In order to obtain the adaptive control strategy which fulfills previous speci-
fications, the following control law is proposed,

u(k) = K(Aγ(k))e(k), (4.8)

where the feedback gain, K(Aγ(k)), is obtained as

K(Aγ(k)) = �1K(A1
γ) + . . .+ �nγK(Anγ

γ ), (4.9)

being K(Aj
γ) ∈ R

2×3 the obtained offline feedback gains for each extreme
realization of the system dynamics (2.26). Notice that the current feedback
gain, K(Aγ(k)), is solved as a convex combination of a set of feedback gains
K(Aj

γ). The problem to determine the vector of coefficients � is a well-known
Linear Programming feasibility problem (LP), which is related to

Aγ(k) =

nγ∑

j=1

�jA
j
γ ,

nγ∑

j=1

�j = 1, �j ≥ 0, ∀j = 1, . . . , nγ , (4.10)

whereAγ is the current matrix (online realization), and Aj
γ is the j-th extreme

realization of the set Aγ .
From previous discussion, the closed-loop system becomes

e(k + 1) = Āγ(k)e(k) =
(
Aγ(k) +BdK(Aγ(k))

)
e(k). (4.11)

When dealing with the problem of determining asymptotically stable con-
trollers, a classical way to proceed is to look for a Lyapunov function deter-
mined by a definite positive matrix P > 0, i.e., V (e) = eTPe, such that

V (e(k + 1))− V (e(k)) ≤ 0, (4.12)

for all e �= 0 [15, 69].
In this book, asymptotic stability and performance objectives for the

closed-loop system (4.11) are defined as:

• The function V (e) = eTμPe is a local Lyapunov function for the system
inside ε(P ) = {e : eTPe ≤ 1} ensuring stability. The meaning of variable
μ is explained subsequently.
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• The set ε(P ) = {e : eTPe ≤ 1} is an invariant set for the closed-loop
system (4.11) satisfying input and state constraints. Note that ε(P ) is a
level set of a Lyapunov function [13].

• The function V (e) is a upper bound of the cost-to-go, and of the cost of
the LQR i.e.,

V
(
e(0)
) ≥ min

u[0,∞)

∞∑

k=0

eT (k)QLe(k) + u(k)TRLu(k), (4.13)

where u[0,∞) denotes the infinite sequence of u(k) ∀e ∈ ε(P ), and QL > 0
and RL > 0 are symmetric matrices weighting the state and input signals.

In general, the invariant ellipsoid and the Lyapunov function are both
determined by P . A further degree of freedom introducing a scaling factor,
μ, is added in the definition of the Lyapunov function leading to V (e) =
eTμPe, μ ∈ R

+. The value of μ provides an upper bound of the cost-to-go
valid within a performance region. Hence, conceptually, minimizing μ implies
maximizing the performance in a region of interest. Roughly speaking, two
opposite objectives are considered. Small values of μ lead to low bounds of
the cost-to-go, and this means high performance over a narrow region. So,
in order to avoid such “narrow region”, a target region, Ψ , is included, as a
constraint in the minimization problem, in which the system is confined at
beginning of an experiment. That is, the initial error between the robot and
the reference must be within Ψ .

Then, from previous requirements the following optimization problem can
be proposed

min
P>0, μ, K(Aj

γ)∀γj

μ

subject to L∗ ∀γj,
(4.14)

where L∗ is defined by the following inequality

L∗ = eT
(
(Āj

γ)
TμPĀj

γ

)
e− eT (μP )e ≤

≤ −eT
(
QL +

(
K(Aj

γ)
)T

RLK(Aj
γ)
)
e ∀e ∈ R

3. (4.15)

Notice that, in this minimization problem all the required conditions are
imposed only at the extremal values of the polytopic set Γ (see Remark 3,
Chapter 2), i.e., at the nγ vertices of Γ . In this case, nγ = 24, since as
shown in Assumption 1, system matrix Aγ is determined by the admissible

realization of four variables (vrfr , vrfl , ir, il). The fulfillment of such conditions
at the vertices yields the satisfaction at any point in Γ , as stated in Property
1, that will be presented in Subsection 4.3.6.

In the following subsection, the inequality regarding asymptotic stability
and performance (4.15) will be translated to LMI form in order to address
the optimization problem (Subsection 4.3.2). Furthermore, input and state
constraints (Subsections 4.3.3 and 4.3.4), and a constraint dealing with the
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performance region will be formulated in terms of LMI (Subsection 4.3.5).
Finally, the minimization problem is completely stated (Subsection 4.3.6).

4.3.2 Asymptotic Stability and Performance

Taking into account asymptotic stability constraint (4.12) and the perfor-
mance objective (4.13), the following inequality is considered

eT
((

Aj
γ +BdK(Aj

γ)
)T

μP
(
Aj

γ +BdK(Aj
γ)
))

e− eT (μP )e ≤ (4.16)

≤ −eT
(
QL +

(
K(Aj

γ)
)T

RLK(Aj
γ)
)
e, ∀e ∈ R

3,

for every vertex γj of Γ , with j = 1, . . . , nγ . Notice that, for notational
convenience, the dependence on time k is omitted.

Now, taking into account (4.11), equation (4.16) follows as

eT
(
(Āj

γ)
TμPĀj

γ

)
e− eT (μP )e ≤

≤ −eT
(
QL +

(
K(Aj

γ)
)T

RLK(Aj
γ)
)
e, ∀e ∈ R

3. (4.17)

The previous inequality is equivalent to the following LMI [15]

(Āj
γ)

TμPĀj
γ − μP ≤ −QL − (K(Aj

γ)
)T

RLK(Aj
γ). (4.18)

Using the Schur complement and replacing S = P−1, Y j
γ = K(Aj

γ)P
−1, and

Āj
γ = Aj

γ +BdK(Aj
γ), the LMI follows as [40]

⎡

⎢
⎢
⎢
⎣

S S(Aj
γ)

T + (Y j
γ )

TBT
d SQ

1
2

L (Y j
γ )

TR
1
2

L

Aj
γS +BdY

j
γ S 0 0

Q
1
2

LS 0 μI 0

R
1
2

LY
j
γ 0 0 μI

⎤

⎥
⎥
⎥
⎦
≥0, (4.19)

for every vertex γj of Γ , with j = 1, . . . , nγ .

4.3.3 Input Constraints

Physical limitations in the actuators must be included to the previous op-
timization problem (4.14) in the LMI form. Knowing that vr ≤ vMr and
vl ≤ vMl , such restriction in terms of the virtual control inputs is given by2

2 Notice that the tracks are considering to always move forward. Nevertheless, in
practice, the tracks can also move backward. However, these negative velocities
are rarely reached, since the reference virtual robot always moves forward. For
that reason, no lower bounds have to be added to the optimization problem.
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vrfr − u1 − b
2u2

1− ir
≤ vMr , (4.20)

for the right track, the case for vl is obtained in a similar way.
Now, the previous constraint is formulated for each extreme realization

of the system dynamics, that is, nγ = 24, since as shown in Assumption
1, system matrix Aγ is determined by the admissible realization of the four

variables (vrfr , vrfl , ir, il). In this way, equation (4.20) follows as

Cj
ru+ djr ≤ vMr , (4.21)

for every vertex γj of Γ , with j = 1, . . . , nγ , where C
j
r =
[

−1
1−ir

−b
2(1−ir)

]
, djr =

vrf
r

1−ir
, and ir and vrfr are those related to the particular extremal realization

γj of the parameter. Recall that u = [u1 u2]
T .

Defining ηjr = vMr − djr and replacing u = K(Aj
γ)e, the previous inequality

becomes

Cj
rK(Aj

γ)e ≤ ηjr , ∀e ∈ ε(P ). (4.22)

Considering the following problem to determine the maximum value of a
linear function with ellipsoidal constraints, i.e.,

a∗ = max
e

Cj
rK(Aj

γ)e

subject to eTPe ≤ 1, (4.23)

the solution to the previous maximization problem is given by [15]

a∗ =

√

Cj
rK(Aj

γ)P−1
(
K(Aj

γ)
)T

(Cj
r )T . (4.24)

Hence, a necessary and sufficient condition for (4.22) to be fulfilled is that

Cj
rK(Aj

γ)P
−1
(
K(Aj

γ)
)T

(Cj
r )

T ≤ (ηjr)
2. (4.25)

Notice that there is a quadratic term (ηjr)
2 depending on γj. In order to

ensure the convexity properties of LMI, this terms is replaced by the upper

bound η̄r = vMr − vrf,M
r

1−iMr
. Thus, it follows

Cj
rK(Aj

γ)P
−1
(
K(Aj

γ)
)T

(Cj
r )

T ≤ (η̄r)
2. (4.26)

Then, applying the Schur complement, it becomes

[
(η̄r)

2 Cj
rK(Aj

γ)(
K(Aj

γ)
)T

(Cj
r )

T P

]

≥ 0. (4.27)
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Finally, previous equation is pre- and post-multiplied by

[
I 0
0 P−1

]

, (4.28)

resulting

[
(η̄r)

2 Cj
rK(Aj

γ)P
−1

P−1
(
K(Aj

γ)
)T

(Cj
r )

T P−1

]

≥ 0, (4.29)

now, replacing S = P−1 and Y j
γ = K(Aj

γ)P
−1, the input constraints result

in the following LMI

[
(η̄r)

2 Cj
rY

j
γ

(Y j
γ )

T (Cj
r )

T S

]

≥ 0, (4.30)

for every vertex γj of Γ , with j = 1, . . . , nγ .
The LMI for the left track is obtained in a similar way, resulting

[
(η̄l)

2 Cj
l Y

j
γ

(Y j
γ )

T (Cj
l )

T S

]

≥ 0, (4.31)

for every vertex γj of Γ , with j = 1, . . . , nγ , and where Cj
l =
[

1
il−1

−b
2(1−il)

]

and η̄l = vMl +
vrf,m
l

1−imr
.

4.3.4 State Constraints

In addition to the input constraints, it must be imposed that the invariant
set is contained in the admissible state space region. This guarantees no state
constraints violations, provided that the initial state is confined in ε(P ). Using
(2.26), state constraints are formulated as

| e | ≤ [eMx eMy eMθ ]T , ∀e ∈ ε(P ), (4.32)

then, it can be written as

| f1e | ≤ eMx , ∀e ∈ ε(P ),

| f2e | ≤ eMy , ∀e ∈ ε(P ), (4.33)

| f3e | ≤ eMθ , ∀e ∈ ε(P ),

where f1 = [1 0 0], f2 = [0 1 0], f3 = [0 0 1]. Considering the following
problem to determine the maximum value of a linear function with ellipsoidal
constraints, i.e.,
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b∗ = max
e

| (fie) |
subject to eTPe ≤ 1, (4.34)

for i = 1, 2, 3. The solution to the previous maximization problem is given
by [15]

b∗ =
√

fiP−1fT
i . (4.35)

Hence, defining S = P−1, the state constraints are formulated in terms of
LMI as

f1Sf
T
1 ≤ (eMx )2,

f2Sf
T
2 ≤ (eMy )2, (4.36)

f3Sf
T
3 ≤ (eMθ )2.

Notice that due to symmetry of LMI, this equation is also achieved for the
lower bounds.

4.3.5 Performance Region

In this subsection, the target region, Ψ , is established. Recall from previous
discussion that Ψ can be considered as a performance region, in which the
system evolves mostly. The objective is that the controller obtained solving
LMI has higher performance inside this set. The parameter ψj

e ∈ Ψ is defined
as the j-th vertex of Ψ . The set Ψ is the parallelotope in the state space
determined by the intervals of interest, i.e., Ψ = {e : ψm

e ≤ e ≤ ψM
e }, and

imposing Ψ ⊆ ε(P ), it leads to

(ψj
e)

TP (ψj
e) ≤ 1, (4.37)

which is equivalent to

1− (ψj
e)

TP (ψj
e) ≥ 0. (4.38)

Then, applying the Schur complement, it becomes

[
1 (ψj

e)
T

ψj
e S

]

≥ 0. (4.39)

4.3.6 Final Optimization Problem

In conclusion from previous subsections, the offline design process is aimed
to obtain a family of control gains fulfilling the LMI constraints and such
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that the resulting Lyapunov function is induced minimizing with respect to
μ, that is,

min
S>0, μ, Y j

γ ∀γj

μ

subject to

⎡

⎢
⎢
⎢
⎣

S S(Aj
γ)

T + (Y j
γ )

TBT
d SQ

1
2

L (Y j
γ )

TR
1
2

L

Aj
γS +BdY

j
γ S 0 0

Q
1
2

LS 0 μI 0

R
1
2

LY
j
γ 0 0 μI

⎤

⎥
⎥
⎥
⎦
≥ 0, ∀γj ,

[
(η̄r)

2 Cj
rY

j
γ

(Y j
γ )

T (Cj
r )

T S

]

≥ 0, ∀γj,

[
(η̄l)

2 Cj
l Y

j
γ

(Y j
γ )

T (Cj
l )

T S

]

≥ 0, ∀γj,

f1Sf
T
1 ≤ (eMx )2,

f2Sf
T
2 ≤ (eMy )2,

f3Sf
T
3 ≤ (eMθ )2,

[
1 (ψj

e)
T

ψj
e S

]

≥ 0, ∀ψj
e.

Recall that the solution to this optimization problem gives a set of feedback
gains, one gain for each extreme realization of the system dynamics (2.26).
Online computation is devoted to solve an LP problem to produce the current
feedback gain as a convex combination of these gains obtained offline (4.9).

As an example, Figure 4.2 plots the invariant ellipsoid obtained solving
(4.40) using the LMI toolbox [35] and MPT toolbox [72] both for Matlab�

suite, and using the values shown in Table 4.1. The small box inside the
ellipsoid depicts the set Ψ . As expected, the ellipsoid is constrained by the
performance region. In addition, input and state constraints are also drawn.
Recall that, once the feedback law is defined, the input constraints are pro-
jected into the state space (see equation (4.22)). This is noticed in the top
right cuts of the outer box in Figure 4.2.
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Fig. 4.2 Ellipsoidal invariant set within state constraints set and outwith perfor-
mance region

Table 4.1 Input and state constraints and performance region for experiments

Max Min Units

Input

vr 2 0 [m/s]

vl 2 0 [m/s]

State

ex 0.5 -0.5 [m]

ey 0.5 -0.5 [m]

eθ 20 -20 [deg]

Performance region

ψex 0.25 -0.25 [m]

ψey 0.25 -0.25 [m]

ψeθ 10 -10 [deg]

The following property shows that the adaptive control law (4.8) ensures
the specifications given at the beginning of this section for any Aγ ∈ Aγ .
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Property 1. Suppose that Assumption 1 holds (see Chapter 2, Section 2.2).
Consider the discrete-time linear time-varying system (2.26) with constraints
e(k) ∈ E, u(k) ∈ U (2.34). The adaptive control law defined in (4.8) is such
that, for each γ ∈ Γ :

• The function V (e) = eTμPe is a local Lyapunov function for the system
inside ε(P ) = {e : eTPe ≤ 1} ensuring stability.

• The set ε(P ) = {e : eTPe ≤ 1} is an invariant set for the closed-loop
system satisfying input and state constraints.

• The function V (e) is a upper bound of the cost-to-go, and of the cost of
the LQR, i.e.,

V
(
e(0)
) ≥ min

u[0,∞)

∞∑

k=0

eT (k)QLe(k) + u(k)TRLu(k), (4.40)

where u[0,∞) denotes the infinite sequence of u(k) ∀e ∈ ε(P ).

Proof:
In the following, it is assumed that � = [�1, · · · , �nγ ] is obtained such that Aγ

is a convex combination of Aj
γ , with γj being the nγ vertices of Γ as in (4.16)

and K(Aγ) is determined by (4.9). The three statements of the property are
proved. Let us start proving the third point, since the first one is a direct
consequence of it. Note that, for notational convenience, the dependence on
time k is omitted.

To prove the third point, it must be shown that inequality

eT
((

Aγ +BdK(Aγ)
)T

μP
(
Aγ +BdK(Aγ)

))
e− eT (μP )e ≤ (4.41)

≤ −eT
(
QL +K(Aγ)

TRLK(Aγ)
)
e, ∀e ∈ R

3,

is satisfied for any γ ∈ Γ , i.e., if it is satisfied at the vertices γj , with j =
1, . . . , nγ . To simplify the notation, the following matrix is defined

Mγ =

⎡

⎢
⎢
⎢
⎣

S S(Aγ)
T + (Yγ)

TBT
d SQ

1
2

L (Yγ)
TR

1
2

L

(Aγ)S +Bd(Yγ) S 0 0

Q
1
2

LS 0 μI 0

R
1
2

LYγ 0 0 μI

⎤

⎥
⎥
⎥
⎦
, (4.42)

where S = P−1 and Yγ = K(Aγ)P
−1. Notice that, the dependence on the

parameter γ is explicit, and that Mγ =
∑nγ

i=1 �
jMγj . Since, as illustrated in

Subsection 4.3.2, condition (4.41) is equivalent to Mγ ≥ 0, and �j ≥ 0 from
(4.10), this leads to

Mγ =

nγ∑

i=1

�jMγj ≥ 0, (4.43)
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what means that (4.41) is fulfilled. To prove that V (e) is a Lyapunov function
for the closed-loop system regardless of the realization of parameter γ, it must
be shown that for any γ ∈ Γ , condition V (e(k+1))−V (e(k)) < 0 is satisfied,
that is,

eT
((

Aγ +BdK(Aγ)
)T

μP
(
Aγ +BdK(Aγ)

))
e− eT (μP )e < 0, ∀e ∈ R

3,

since V (e) is positive definite. From QL > 0, RL > 0 and (4.41), the con-
dition follows. Furthermore, since it is proved for the entire space, V (e) is,
in particular, a Lyapunov function in the ellipsoid centered in the origin. Fi-
nally, the set ε(P ) is an invariant set since it is the level set of a Lyapunov
function (see [13]), and it fulfills the state constraints by construction. For
what concern the input constraints, it is obtained that

CγK(Aγ)e =

nγ∑

j=1

�jCγjK(Aj
γ)e ≤

nγ∑

i=1

�j η̄ = η̄ ∀e ∈ ε(P ), (4.44)

is satisfied by convexity of Γ and fulfillment of input constraints at its vertices.
�

4.4 Results

This section analyzes the performance of the two proposed slip compensation
control strategies, the slip compensation adaptive controller using dynamic
feedback linearization (Section 4.2) and the adaptive control law using LMI
(Section 4.3). Additionally, the original formulation of the linear feedback
controller, detailed in [21] and [64], has also been implemented for compari-
son purposes. From now on, the slip compensation adaptive controller using
LMI is referred to as LMI-based controller, the slip compensation adaptive
controller using dynamic feedback linearization is referred to as FL controller,
and the original linear feedback controller as OC controller.

Some of the configuration parameters employed for physical experiments
are summarized in Table 4.1. The rest of parameters are: b = 0.5[m], re-

ference velocities are restricted to {vrfr , vrfl ∈ [0.1, 1.4][m/s]} and slips are
restricted to {ir, il ∈ [0, 25][%]}. The own parameters of the LMI-based con-
trol law are QL = diag([1 1 0.1]) and RL = 10I2. The parameters of the
linear feedback controllers are set to β = 1 and ξ = 0.6 in order to reach
a soft overdamped closed-loop behaviour. Notice that QL and RL matrices
have been tuned empirically to achieve a satisfactory performance. The ini-
tial location of the mobile robot is always [0 0 0]T . A sampling period of
Ts = 0.35[s]. This sampling period has been selected according to the desired
specifications of the closed-loop system.
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4.4.1 Experimental Results

This subsection describes two physical experiments to check the performance
of the three compared control strategies. For that purpose, the mobile robot
Fitorobot was employed. Before discussing experiments, some considerations
about practical issues must be pointed out:

• Recall, from the introductory chapter, that a typical four-layer naviga-
tion architecture has been designed and implemented in order to attempt
physical experiments (see Figure 1.3).

• The visual odometry (with visual compass) approach has been used for
localize the robot. The slip of both tracks were estimated comparing the
actual robot velocity, obtained using visual odometry, and the theoretical
velocities of the tracks, obtained using incremental encoders. In this case,
the ground-truth is determined using the DGPS (position) and the mag-
netic compass (orientation) previously employed in Chapters 2 and 3. The
DGPS has an accuracy of 0.20 [m] and the magnetic compass of 0.1 [deg].

• The tests were carried out on an off-road gravel terrain, similar to that
presented in Figure 2.8 (Chapter 2, Section 2.7). Although this is not an
ideal site for the experiments, since it is a partially bumpy terrain, the
results presented here are illustrative of the performance of the compared
controllers.

• The experiments were carried out with sunlit conditions, and thus some
shadows that can lead to false matches in the visual odometry algorithm
were observed. Nevertheless, these false matches were minimized due to
the two approaches explained in Chapter 3 (Section 3.3.1): appropriate
downward camera position and threshold filter.

• Although many experiments have been carried out, in this case a circular
trajectory and a U-shaped trajectory have been selected. In the former
the robot moved at middle/high velocities and in the second one it moved
at low velocities. Notice that similar trajectories to these selected here are
usually employed in off-road mobile robotics, see for instance [76, 79, 104,
115, 137].

Experiment 1. Circular Trajectory

In this first experiment, a circular reference trajectory was tested. The mo-
tivation by selecting this trajectory is because it is a closed trajectory, what
helps in a better comparison of the controllers, since the robot has to come
back to the starting point. Furthermore, the reference track velocities were 0.6
[m/s] for the right track and 0.5 [m/s] for the left track. For the testbed, these
can be considered as middle/high velocities. In this first selected experiment,
the total travelled distance was close to 18 [m].

Figure 4.3a shows the reference trajectory and the followed trajectories
using the three control strategies. Figure 4.3b shows the reference trajectory,
the trajectory followed using the LMI-based controller, and the ground-truth
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(DGPS). In the former plot, it is possible to observe that the LMI-based
controller achieves the best behaviour. However, as expected, it does not fix
the reference trajectory due to the disturbances and inconveniences of physi-
cal experiments. Nevertheless, all the compared controllers achieves a proper
result and the mobile robot comes back to the initial point of the circular
trajectory. An interesting conclusion is obtained from Figure 4.3b. As re-
marked at the beginning of this subsection (considerations about practical
issues), the trajectory obtained using the LMI-based controller does not fix
the ground-truth (DGPS). In this particular experiment, the maximum la-
teral deviation is 0.52 [m], and the mean lateral deviation is 0.12 [m], what
means 0.67 [%] of the total travelled distance.
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Fig. 4.3 Experiment 1. Followed trajectories during the experiment

In Figure 4.4a, the orientations are shown. The proper behaviour of the
LMI-based controller with few oscillations can be observed. Figure 4.4b plots
the reference orientation, the orientation obtained using the LMI-based con-
troller, and the ground-truth (magnetic compass). As expected, from the
discussion about Figure 4.3b, the orientation obtained using the LMI-based
controller follows the ground-truth with small deviations. Particularly, the
mean deviation is 7.62 [deg] with standard deviation 4.12 [deg].

Figure 4.5 shows the slip estimations for each track. Recall that the slip is
obtained as the relation between the actual robot velocity (visual odometry)
and the theoretical velocities of the tracks (incremental encoders). In this
particular experiment, the tracks move at different velocities. For that rea-
son, the obtained slip estimations are different. Notice that this fact can lead
to a mistake since the same actual velocity is being supposed for both tracks.
In order to minimize this mistake related to circular trajectories, the mean
value of both slip estimations is considered. It is assumed that this solution
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holds for the tested range of velocities. In further works, two independent
cameras will be employed to estimate the actual velocity of each track. The
mean slip value is 4.41 [%] that confirms the results presented in Chapter 2
about the mean slip value on a gravel soil.
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Fig. 4.4 Experiment 1. Orientations
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Fig. 4.5 Experiment 1. Slip estimations for the LMI-based controller (comparing
the robot velocity using visual odometry and track velocities using encoders)

The errors between the reference trajectory and those steered by the com-
pared controllers are displayed in Figure 4.6. From these plots, it is noticed
that the best behaviour is obtained for the LMI-based controller. The sug-
gested FL controller also achieves a satisfactory result in comparison to the
OC controller. A positive longitudinal error is observed. This means that the
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real robot is pursuing the reference robot. Furthermore, from these plots, it
can be observed a maximum longitudinal error of the linear feedback con-
trollers close to 0.50 [m], which can be considered as unappropriate. In re-
lation to the lateral error, the OC controller shows a noticeable oscillatory
behaviour with maximum values of 0.15 [m]. In this case, it means that the
robot can crash with obstacles in a narrow workspace. The mean longitudi-
nal errors are: 0.05 [m] with standard deviation 0.06 [m] for the LMI-based
controller, 0.09 [m] with standard deviation 0.10 [m] for the FL controller,
and 0.13 [m] with standard deviation 0.10 [m] for the OC controller. The
mean lateral errors are: -0.01 [m] with standard deviation 0.03 [m] for the
LMI-based controller, -0.01 [m] with standard deviation 0.08 [m] for the FL
controller, and -0.02 [m] with standard deviation 0.06 [m] for the OC con-
troller. The mean orientation errors are: 0.69 [deg] with standard deviation
3.38 [deg] for the LMI-based controller, 1.80 [deg] with standard deviation
4.84 [deg] for the FL controller, and 2.27 [deg] with standard deviation 4.73
[deg] for the OC controller.

Figure 4.7 shows the reference velocities (denoted as vrfr and vrfl ), the con-
trol inputs (referred to as vr and vl), and the real track velocities (labeled as
“Right Enc.” and “Left Enc.”) for the case of the LMI-based controller. Two
interesting conclusions can be obtained from these plots. First, the motion
controller increases the control inputs to compensate the negative slip effect.
Second, the low-level PI controllers, responsible to achieve the set-points
given by the motion controllers, work properly for both tracks.

Finally, Figure 4.8 displays the pixel displacement values between consec-
utive images for the case of the LMI-based controller (visual odometry), and
the computation time employed (CPU time employed at each sampling ins-
tant) by the LMI-based controller and the FL controller. It is important to
remark that since the robot is moving on a circular trajectory, different light-
ing conditions occurred during the motion. This situation leads to shadows
in the images employed by the visual odometry approach, which are used
to estimate the actual robot velocity. However, as checked in Figure 4.8a,
an admissible number of outliers takes place, due to the proper downward
camera position and the threshold filter. It is interesting to point out that
the mean value of the pixel displacement is around -100 [pixel]. Recall from
the experiments presented in Chapter 3, where the robot moved between 0.4
[m/s] and 0.5 [m/s], a pixel displacement of -80 [pixel] was obtained (see Fi-
gure 3.11b). Figure 4.8b shows the low computation time employed by the
two suggested controllers. Furthermore, it is checked that sampling period is
always ensured. In this case, the mean computation time for the LMI-based
controller is 0.25 [s] and for the FL controller is 0.20 [s]. Recall that motion
controllers run on the computer on-board the mobile robot (Intel Pentium
III 1GHz, 512 MB RAM).
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(c) Orientation error

Fig. 4.6 Experiment 1. Error with respect to the reference trajectory along the
travelled distance

Experiment 2. U-shaped Trajectory

In this second experiment, a U-shaped trajectory has been selected. It consti-
tutes an interesting trajectory which combines straight-line motions and two
90-degrees turns. The total travelled distance was close to 30 [m]. In order
to check the navigation architecture at low velocities, a maximum reference
velocity of 0.3 [m/s] was selected.

Figure 4.9a shows the reference trajectory and the followed trajectories
using the three compared control strategies. Figure 4.9b shows the reference
trajectory, the trajectory followed using the LMI-based controller, and the
ground-truth (DGPS). In the former plot, it is possible to observe that the
trajectory obtained using the LMI-based controller follows properly the re-
ference. The trajectories obtained using the linear feedback controllers have
a smooth oscillatory behaviour, especially after the 90-degrees turns. As in
previous experiment, the trajectory followed using the LMI-based controller
does not fix the ground-truth. Particularly, the maximum lateral deviation is
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Fig. 4.7 Experiment 1. Control signals and actual tracks velocities for the LMI-
based controller
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Fig. 4.8 Experiment 1. Pixel displacements (LMI-based controller) and computa-
tion times (LMI-based and FL controllers)

0.81 [m], and the mean lateral deviation is 0.28 [m] which means 0.96 [%] of
the total travelled distance.

In Figure 4.10a, the orientations are shown. From this figure, it is clearly
observed the smooth oscillatory behaviour of the linear feedback controllers,
especially at the end of the experiment. The orientation obtained using the
LMI-based controller follows the reference with small oscillations. Figure
4.10b plots the reference orientation, the orientation obtained using the LMI-
based controller, and the ground-truth (magnetic compass). As expected, the
orientation obtained using the LMI-based controller follows the ground-truth
with small deviations. In this case, the mean deviation is -1.35 [deg] with
standard deviation 5.48 [deg].
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Fig. 4.9 Experiment 2. Followed trajectories during the experiment
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Fig. 4.10 Experiment 1. Orientations

Figure 4.11 displays the slip estimations. In this case, the median slip
value for the right track was 7.51 [%], and for the left track was 2.45 [%].
It is possible to notice that the slip for the right track is almost constant.
However, for the case of the left track many peaks are observed. Furthermore,
it has a mean value different from the right track. This phenomenon was not
expected. The explanation for this issue is the smooth oscillatory behaviour
of the velocity for the left track, such as it will be explained in the subsequent
figures.

The error between the reference trajectory and those steered by the com-
pared controllers are plotted in Figure 4.12. Especially remarkable is the
almost zero lateral error achieved by the LMI-based controller. Notice that
a substantial oscillatory behaviour is achieved by the linear feedback con-
trollers. Particularly, the OC controller obtains a maximum lateral error close
to 0.40 [m]. This error can lead to crash the mobile robot with obstacles in
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Fig. 4.11 Experiment 2. Slip estimations for the LMI-based controller (compar-
ing the actual robot velocity obtained using visual odometry and track velocities
obtained using encoders)

a narrow workspace. The mean longitudinal errors are: 0.02 [m] with stan-
dard deviation 0.03 [m] for the LMI-based controller, 0.09 [m] with standard
deviation 0.05 [m] for the FL controller, and 0.13 [m] with standard devia-
tion 0.06 [m] for the OC controller. The mean lateral errors are: -0.004 [m]
with standard deviation 0.03 [m] for the LMI-based controller, 0.02 [m] with
standard deviation 0.17 [m] for the FL controller, and 0.01 [m] with standard
deviation 0.18 [m] for the OC controller. The mean orientation errors are:
0.26 [deg] with standard deviation 2.45 [deg] for the LMI-based controller,
0.66 [deg] with standard deviation 8.16 [deg] for the FL controller, and 1.09
[deg] with standard deviation 8.51 [deg] for the OC controller.

Figure 4.13 presents the reference velocities, the control inputs, and the
real track velocities for the case of the LMI-based controller. From the control
point of view, these velocity profiles are more interesting that those from the
previous experiment. In this case, the reference velocity of the left track
changes along the trajectory. Again, the right tuning of the PI controllers
is noticed, since the real velocities of the tracks follow satisfactorily the set-
points. It is important to clarify that the smooth oscillatory behaviour of
the left track is stressed by the fact that, such as remarked at the beginning
of this subsection, the mobile robot was moving on a partially bumpy gravel
soil. In this scenario, little stones produce vibrations to the vehicle, and hence
to the tracks. Nevertheless, these small oscillations were expected taking into
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Fig. 4.12 Experiment 2. Error with respect to the reference trajectory along the
travelled distance

account that a TMR with a limited suspension mechanism has been used as
testbed.

Finally, Figure 4.14 displays the pixel displacement values between consec-
utive images (visual odometry) for the LMI-based controller, and the com-
putation time employed by the LMI-based and the FL controllers. As in the
previous experiment, few outliers appear due to the proper downward camera
position and the threshold filter. Notice that the mean value of the pixel dis-
placement is around -50 [pixel]. It confirms that the mobile robot was moving
at a slower velocity than in previous experiment. Recall that in the previous
case, the mean value of the pixel displacement was around -100 [pixel]. Fi-
gure 4.14b shows the low computation time employed by the two suggested
controllers and the fulfillment of the sampling period. The mean computation
time for the LMI-based controller is 0.24 [s] and for the FL controller is 0.19
[s].
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Fig. 4.13 Experiment 2. Control signals and actual tracks velocities for the LMI-
based controller
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Fig. 4.14 Experiment 2. Pixel displacements (LMI-based controller) and compu-
tation time (LMI-based and FL controllers)

4.5 Conclusions

In this chapter, two new control algorithms following diverse paradigms and
dealing with the slip phenomenon problem are presented. These controllers
are compared through physical experiments. On the one hand, the well-known
linear feedback controller [21, 64] has been extended considering slip. For
that purpose, time-dependent gains are updated online using the estimated
slip. It constitutes an easy understandable and configurable control law that
demands a really small computation load.

On the other hand, a more elaborate slip compensation adaptive con-
trol scheme using LMI has been designed. In this case, asymptotic stability,
performance, and input and state constraints fulfillment are ensured. Fur-
thermore, efficient real-time execution is achieved. For that purpose, a set of
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feedback gains is obtained offline, one gain for each extreme realization of the
system dynamics. Afterwards, an adaptive feedback control law is obtained
online as a convex combination of the previously determined gains.

The reported results confirm that the slip compensation motion control
laws are suitable for off-road conditions and improve the performance of si-
milar schemes with no slip compensation. Furthermore, the use of more ela-
borate control strategies, such as the LMI-based adaptive controller, achieves
the most satisfactory results in physical experiments.

It is important to remark that solvers of LP problems require relatively
small computation resources and execution time. In this case, the LP problem,
involving 16 optimization variables, is solved at computation times lower
than 0.2 [s]. For that reason, the current online computational aspect can be
successfully applied to many other fast systems. Nevertheless, a new selection
process to obtain the feedback control gain using geometric relations will be
analyzed in future works. For instance, if current parameter realization γ is
close to an extreme realization, the offline gain for that extreme realization
would be employed at the current sampling instant.



Chapter 5

Robust Predictive Motion Controller
for Tracked Robots

This chapter focuses on the design of a robust tube-based predic-
tive controller ensuring robustness (uncertainty in robot position
and slip estimation), constraints fulfillment (state and input cons-
traints), stability, and efficient real-time execution. Physical ex-
periments show the better performance of this approach to known
solutions.

5.1 Introduction

As commented in previous chapters, when a mobile robot moves in off-road
conditions some undesirable effects, such as noisy measurements and inaccu-
rate robot location, are intensified. Additionally, simplified models are usually
used for control design purposes. Thus, these factors can lead to uncertainties
in the robot motion that may entail inappropriate control actions or even sys-
tem instability. For that reason, research efforts for the application of robust
control strategies in mobile robotics are required. For instance, the work [38]
presents a predictive strategy that permits to avoid unexpected static obs-
tacles in the robot workspace. For purposes of MPC real-time execution, a
neural network was trained. A Smith-predictor-based generalized predictive
controller was discussed in [103]. This formulation permits controlling a mo-
bile robot with dead-time uncertainties taking into account Smith-predictor
features in the implementation of the predictive control law. In [25, 26], the
trajectory tracking problem for a WMR considering uncertainties in the dy-
namic model is addressed. The proposed solution is based on sliding mode
control. The tracking control problem of a WMR with both parametric and
non-parametric uncertainties is also considered in [28]. Here, the controller
is designed using the adaptive backstepping technique and neural networks.
In [134], a distributed robust control scheme is proposed for formation sta-
bilization of non-holonomic wheeled robots with parametric uncertainty and
actuator saturations. The control strategy is based on H∞ method and is
formulated using LMI. The work [127] proposes an adaptive robust fuzzy
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control scheme with a genetic algorithm to solve the path tracking problem
of a WMR. In this case, uncertainties are included in the dynamic model of
the robot.

In order to contribute in this research area, this chapter describes how the
adaptive control problem presented in Chapter 4 is formulated as a robust
control algorithm (where uncertainties are considered). For this purpose, a
robust MPC strategy is considered. This decision is motivated by the fact
that MPC constitutes a popular and settled control technique to deal with
constrained systems and process uncertainties [8, 18, 96, 99]. From the theo-
retical point of view, this chapter has addressed the extension of tube-based
predictive control to time-varying systems. From a practical point of view,
the designed control strategy compensates slip and guarantees that state and
input constraints are fulfilled, since these constraints are taken into account in
the solution of the optimization problem. Furthermore, an efficient real-time
execution is achieved in physical experiments.

An efficient technique for practical implementation of robust MPC is the
tube-based MPC. A pioneering work, in which the concept was probably
first tackled is [10]. In this work, the design of a robust control law ensuring
hard constraints satisfaction is addressed by means of the computation of
a sequence of state space regions, called reachability tube. The term tube-
based refers to those control techniques whose objective is to maintain all the
possible trajectories of an uncertain system inside a sequence of admissible
regions by using set-theory related tools. Such approach has been widely
employed to robustify MPC [24, 75, 94, 95, 126].

Tube-based MPC approaches are motivated by the fact that the predicted
evolution of a system obtained using a nominal model differs from the real
evolution due to uncertainty. In order to consider this mismatch in the con-
troller synthesis, the basis of tube-based MPC formulation consists in com-
puting the region around the nominal prediction that contains the state of
the system under any possible uncertainties [84]. This region can be obtained
in two different ways. One possibility is to calculate the region at each step
within the prediction horizon. This leads to a sequence of regions, {Ri},
called reachable sets, that is, the smallest sets of states of the closed-loop
uncertain system that ensure to contain the system state evolution at any
time i for any trajectory starting at the origin [24, 41]. The second possibility
is to determine a single region that bounds the sequence of reachable sets,
that is, Ri ⊂ Ri+1 ⊂ R, where usually R is a robust invariant set [75, 94].

Tube-based MPC usually employs a pre-stabilizing control policy (u =
K(e− ē)+ g) [24, 45, 94], where the local feedback gain, K, compensates the
mismatch between the nominal, ē, and the real, e, evolution of the system
[24, 75, 84], and a deterministic MPC controller, g, is employed to stabilize
the nominal system for which tighter constraint sets are considered. This
chapter details one way to implement a robust tube-based MPC controller
by means of reachable sets. For experimental validation a tracked mobile
robot has been used.
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This chapter is organized as follows. Section 5.2 concerns with problem
statement and control objectives. In Section 5.3, the robust tube-based MPC
strategy is described. Section 5.4 demonstrates the performance of the pro-
posed control approach through physical experiments. Finally, Section 5.5
presents some conclusions and future research.

5.2 Problem Statement

This chapter deals with the discrete-time trajectory tracking error model
with additive uncertainty (2.28) and the nominal trajectory tracking error
model (2.30). The mismatch between the nominal and the real evolution of
the system is given by

ẽ(k) = e(k)− ē(k), (5.1)

where ẽ = [ẽx ẽy ẽθ]
T ∈ R

3 is the mismatch state.
Then, the control objective is to compensate this mismatch and to steer the

nominal system as close as possible to the real process without constraints
violation. For that purpose, the following pre-stabilizing control policy is
considered [24, 45]

u(k) = Kẽ(k) + g(k), (5.2)

where K is a local controller whose goal is to compensate the mismatch.
Recall from Chapter 2 that, u = [u1 u2]

T is the input vector of (2.28), and
g = [g1 g2]

T is the control input for the nominal system (2.30).
Finally, the dynamics of the closed-loop mismatch system is defined re-

placing (2.28) and (2.30) into (5.1), what results in

ẽ(k + 1) = e(k + 1)− ē(k + 1) =
(
Aυ(k) +BdK

)
ẽ(k) + w(k), (5.3)

where Aυ(k) was given by (2.29) and Bd was defined in (2.27).
The main features of the suggested robust tube-based MPC strategy are:

• Robustness. Following the tube-based MPC policy, additive uncertainties
and time-varying dynamics are taken into account in the control design.

• Performance. An optimization problem (QP) is solved at each sampling
instant obtaining the proper control actions as a compromise between
small deviations from the reference trajectory and suitable control actions.

• Input and state constraints fulfillment. This requirement is guaranteed by
ensuring constraints satisfaction in the minimization of the MPC control
law.
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• Stability1. It is ensured through a quadratic Lyapunov function constitut-
ing the terminal cost for the nominal system (nominal MPC) and a robust
positively invariant set.

• Efficient real-time execution. A standard nominal MPC is solved online
to control the nominal system. This fact implies that tube-based MPC
strategies fit properly to applications with fast dynamics and where high
sampling frequencies are employed.

5.3 Robust Tube-Based MPC Controller

This section describes the implementation of a robust tube-based MPC con-
troller considering the ideas proposed in [24, 94]. First, the local control law,
K, that compensates the effect of the mismatch (5.1) has to be calculated.
Afterwards, reachable sets containing the real state for every possible rea-
lization of the uncertainty and every admissible parameters occurrence are
calculated. Finally, online computation is devoted to the solution of a stan-
dard MPC for the nominal system with restricted constraints.

Figure 5.1 shows the robust tube-based MPC strategy using offline reacha-
ble sets. First, the reachable sets for the local uncertain closed-loop system
(5.3) are calculated. Then the state and input constraints are replaced, using
the previously determined reachable sets. Online computation is only devoted
to a standard MPC controller handling the nominal system for which tighter
constraints are considered. Finally, LMI are employed to determine the termi-
nal cost for the MPC optimization problem and a terminal robust invariant
set is calculated (see Subsection 5.3.3).

The steps that will be explained subsequently to implement the robust
tube-based MPC approach are:

1. Local control gain (Subsection 5.3.1). The local control law, K, that com-
pensates the effect of the mismatch (5.1) has to be calculated. In particular,
such local gain tries to compensate the system realization Aυ and it will
have the form

K̃ = Kn +KrΔvrfr +K lΔvrfl ,

where each component Kn, Kr and K l will try to compensate a part of
the system realization.

2. Reachable sets (Subsection 5.3.2). Reachable sets containing the real state
for every possible realization of uncertainty are calculated. In this case,
such reachable sets will also include the bounding set dealing with the

1 Notice that, it is only ensured the asymptotic stability for the nominal MPC
related to the nominal system. It is considered that the problem of ensuring
stability of the whole tube-based control strategy is beyond the scope of this
monograph.
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Fig. 5.1 Robust tube-based MPC control strategy. Reachable sets are solved offline
compensating uncertainty, online computation is devoted to solve a nominal MPC

system variation which has not been compensated by the local control
gain. In this way, reachable sets will have the form

Rk+i+1 �
⋃

Aυ∈Aυ

(Aυ +BdK̃)Rk+i ⊕W, ∀i = 0, . . . , N − 1, (5.4)

where Rk+i is the reachable set of the i-th step within the prediction hori-
zon N .

3. Modification of state and input constraints (Subsection 5.3.2). In order
to take into account the “control effort” spent to compensate the sys-
tem mismatch and the uncertainty, original state and input constraints
are replaced with more restricted ones using the previously determined
reachable sets

Ēi = E 
Ri ∀i = 1, . . . , N, (5.5)

for the state constraints, and for the case of the input constraints

Ūi=U 
 (KnRi ⊕KrΔvrefr Ri ⊕K lΔvrefl Ri

) ∀i = 0, . . . , N − 1. (5.6)

4. Terminal constraints for MPC (Subsection 5.3.3).
5. MPC strategy for the nominal system (Subsection 5.3.4).
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5.3.1 Local Compensation of System Dynamics

This subsection describes how the control law for the local uncertain system
(5.3) is determined. In this case, the local closed-loop system without additive
uncertainty (W = {0}) is considered, since this term will be included in the
reachable sets (see Subsection 5.3.2).

In order to obtain a local control law for the closed-loop system (5.3) with-
out the additive uncertainty term, first, the system matrix Aυ is decomposed
into a time-invariant part and a time-varying one (the dependence on time k
has been omitted)

Aυ = I3 +Arvrfr +Alvrfl , (5.7)

where

Ar =

⎡

⎣
0 εr 0

−εr 0 χ
0 0 0

⎤

⎦ , Al =

⎡

⎣
0 −εl 0
εl 0 χ
0 0 0

⎤

⎦ , (5.8)

with εr = Ts

(
1−īr
b

)
, χ = Ts

2 and εl = Ts

(
1−īl
b

)
.

Now, from Assumption 1 (see Chapter 2), it is obtained that

vrfr = v̄rfr +Δvrfr ⇒ Δvrfr ∈ [δvrf,mr , δvrf,Mr ], (5.9)

vrfl = v̄rfl +Δvrfl ⇒ Δvrfl ∈ [δvrf,ml , δvrf,Ml ], (5.10)

where v̄rfr and v̄rfl are the nominal reference velocities of the right and left

tracks, respectively, and Δvrfr and Δvrfl are a new range in the reference
velocities. Then, the system matrix Aυ is expressed as

Aυ = An +ArΔvrfr +AlΔvrfl , (5.11)

where An = I3 +Ar v̄rfr +Alv̄rfl represents the time-invariant part of Aυ and
the rest of terms are time-varying that must be bounded. Replacing (5.11)
into (5.3), it follows

ẽ(k + 1) =
(
An +ArΔvrfr +AlΔvrfl +BdK

)
ẽ(k) + w(k). (5.12)

In order to compensate the system dynamics, the local control gain can be
defined as

K̃ = Kn +KrΔvrfr +K lΔvrfl , (5.13)

which implies that equation (5.12) becomes

ẽ(k + 1) = An
clẽ(k) +Ar

clΔvrfr ẽ(k) +Al
clΔvrfl ẽ(k) + w(k), (5.14)
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where An
cl = (An+BdK

n), Ar
cl = (Ar +BdK

r), and Al
cl = (Al+BdK

l). The
gain Kn is directly obtained solving an LQR problem. The gains Kr and K l

have to be chosen such that the effect of the system dynamics in matrices Ar

and Al is partially compensated in closed-loop. In this way

Kr =

[
0 − εr

Ts
0

0 0 0

]

, K l =

[
0 εl

Ts
0

0 0 0

]

, (5.15)

and, it holds

Ar
cl =

⎡

⎣
0 0 0

−εr 0 χ
0 0 0

⎤

⎦ , Al
cl =

⎡

⎣
0 0 0
εl 0 χ
0 0 0

⎤

⎦ . (5.16)

Note that it is possible to completely remove the effects of the system dy-
namics in the ẽx- and ẽθ-components of the state. However, the ẽy-component
cannot be compensated directly. For that reason, the bounds of the terms εr,
εl and χ have to be considered in the offline reachable sets calculation. This
issue is addressed in Subsection 5.3.2.

5.3.2 Reachable Sets Calculation

This subsection focuses on the reachable sets calculation.
Consider the uncertain closed-loop system (5.3) whose evolution depends

on the local control action (K̃ẽ) and the uncertainties. Then, the reachable
set at first step within the prediction horizon is denoted as Rk = {0}, where
subscript k means current sampling instant (first step within the prediction
horizon). The rest of reachable sets are recursively calculated as

Rk+i+1 �
⋃

Aυ∈Aυ

(Aυ +BdK̃)Rk+i ⊕W, ∀i = 0, . . . , N − 1, (5.17)

where Rk+i is the reachable set of the i-th step within the prediction horizon
N (see Assumption 4). In this particular case, the reachable sets are computed
as

Rk+i+1 = An
clRk+i ⊕ co{(Ar

clδv
rf,m
r Rk+i) ∪ (Ar

clδv
rf,M
r Rk+i)} ⊕

⊕co{(Al
clδv

rf,m
l Rk+i) ∪ (Al

clδv
rf,M
l Rk+i)} ⊕W, (5.18)

∀j = 0, . . . , N − 1,

where co{·} is the convex hull.
Notice that, in order to determine the offline reachable sets, bounds in

the elements of the matrices Ar
cl and Al

cl have been considered. Recall from
(5.14)-(5.16) that these elements cannot be fully compensated by the local
control law.
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Finally, following the ideas from [24], [75], [83], [94], original constraints
(2.34) are replaced with more restricted ones using the offline reachable sets
previously calculated. That is,

Ēi = E 
Ri ∀i = 1, . . . , N. (5.19)

Then, the state constraints satisfaction is ensured and feasibility is also
preserved in the presence of uncertainties in the system (2.28). Additionally,
the input constraints are also replaced by

Ūi = U 
 (KnRi ⊕KrΔvrefr Ri ⊕K lΔvrefl Ri

) ∀i = 0, . . . , N − 1.(5.20)

Assumption 4. Assume that R∞ ⊂ E and R∞ ⊂ E. It ensures the sets Ēi

and Ūi are not empty.

5.3.3 Terminal Constraints for MPC

A common approach to ensure the stability of deterministic MPC consists
in incorporating both a terminal cost (Φ) and a terminal constraint set (Ω)
[96]. In this subsection, the local control law that supposes the terminal cost
for the nominal system and the terminal robust invariant set are detailed.
Notice that, similar stability properties for analogous control strategies are
found in the literature [24, 75, 84, 94].

The purpose of the terminal cost is to ensure closed-loop stability. To this
end, it requires the use of a Lyapunov function with a stabilizing control
law. In this case, the terminal cost, Φ, is given by the Lyapunov function
V (e) = eTPe. This mathematical development goes beyond the scope of this
book, but for details one can check [40].

Once the terminal cost is discussed, the second property to ensure the
stability of the MPC is that the last element of the predicted state sequence
must belong to an invariant set [96]. In this case, a similar approach to that
found in [12, 37, 68] is followed to obtain the maximal robust invariant set
for the uncertain system contained in the state and input constraint sets. For
that purpose, the concept of one-step operator is employed as

Qj
A(Ω) = {e ∈ E : K(Aj

υ)e ∈ U,
(
Aj

υ +BdK(Aj
υ)
)
e + w ∈ Ω, ∀w ∈ W}.

(5.21)
Note that the one-step operator is a standard tool for the invariant sets
calculation through iterative procedures [34], [68], [82].

Then, taking into account the previously defined one-step operator, the
maximal robust invariant set for the uncertain system (2.28) is obtained by
means of the following iterative procedure:

1. Initialization: Ω0 = E ∩ {ω ∈ R
3 : K(Aj

υ)ω ∈ U, ∀j = 1, . . . , nυ}.
2. Iteration: Ωk+1 = Ωk ∩Qj

A(Ωk) ∀j = 1, . . . , nυ.
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3. Termination condition: stop when Ωk+1 = Ωk or Ωk+1 = ∅. Set Ω =
Ω∞ = Ωk+1.

An important issue when dealing with an algorithmic procedure for com-
puting the robust invariant sets is its finite determinedness, that is, the con-
ditions under which the algorithm provides a solution after a finite number
of iterations. Results regarding the problem of finite determination can be
found in [12, 37, 68]. Notice that, finite determinedness has not been proved
for this case, since it is beyond the scope of this monograph. Nevertheless,
the application of this algorithm to the case under analysis provides a result
after a finite number of iterations.

5.3.4 MPC Strategy

Finally, the online computational aspect related to MPC is considered. No-
tice that MPC policy deals with the nominal system (2.30), since the mis-
match between the real system and the nominal one is compensated by the
local control law and uncertainty is within the reachable sets. Assume that
a measurement of the state ē is available at the current time k. Then, the
optimization problem is stated as follows

min
G(k)�{gk,...,gk+N−1}

JN (ē(k), G(k)) =

N−1∑

i=0

ēTk+iQM ēk+i + gTk+iRMgk+i + Φ(ēk+N)

(5.22)

subject to ēk+i ∈ Ēi ∀i = 1, . . . , N,

gk+i ∈ Ūi ∀i = 0, . . . , N − 1,

ēk+N ∈ Ω �RN ,

where ēk+i denotes the predicted state vector at time k + i, obtained by
applying the input sequence G(k) � {gk, . . . , gk+N−1} to model (2.30) star-
ting from the state ē(k). The terminal cost, Φ(·), and the terminal constraint
set, given by the region Ω, were both calculated in previous subsection.

Note that the MPC includes the new state and input constraints, Ēi

and Ūi, come from (5.19)-(5.20). Finally, matrices QM = QT
M ≥ 0 and

RM = RT
M > 0, constitute parameters to be tuned for the MPC control

law. Depending on their values, more attention can be given to the states or
to the control signals (see a discussion about the selected values in Section
5.4).

To summarize, MPC control law is based on the following idea [7]. At
time k, compute the optimal solution G∗(k) = {g∗k, . . . , g∗k+N−1} to problem
(5.22), and applying

g(k) = g∗k, (5.23)

as input to system (2.30); repeat the optimization (5.22) at time k+1 based
on the new state ē(k + 1), and continue iteratively.
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5.4 Results

This section analyzes the performance of the proposed robust tube-based
MPC approach through physical experiments. Furthermore, the slip com-
pensation adaptive controller using LMI and the slip compensation adaptive
feedback controller using dynamic feedback linearization, both presented in
Chapter 4, have been considered for comparison purposes. Additionally, the
original formulation of the linear feedback controller, detailed in [21, 64], has
also been implemented. From now on, the robust tube-based MPC with offline
reachable sets calculation is denoted as Offline MPC, the slip compensation
adaptive controller using LMI is referred to as LMI-based controller, the slip
compensation adaptive controller using dynamic feedback linearization is re-
ferred to as FL controller, and the original linear feedback controller as OC
controller.

The parameters used for the physical experiments are: b = 0.5[m], no-
minal slip is 0.10 (10 [%]), the uncertainty set is given by W = {w1, w2 ∈
±0.0035[m], w3 ∈ ±0.25[deg]}. State constraints are E = {ex, ey ∈ ±0.5[m],

eθ ∈ ±20[deg]}, reference linear track velocities are restricted to {vrfr , vrfl ∈
[0.1, 1.4][m/s]}, and real linear track velocities are restricted to {vr, vl ∈
[−2, 2][m/s]}, QO = QY = diag([1 1 0.0001]) and RO = RY = I2,
QM = diag([1 1 0.0001]) and RM = I2. The parameters of the linear
feedback controllers are set to β = 1 and ξ = 0.6 in order to reach a
soft overdamped closed-loop behaviour. Notice that similar configuration
parameters to that used in previous chapter and in Chapter 2, Subsec-
tion 2.7.3 have also been employed here. The sampling period has been se-
lected as Ts = 0.35[s]. The values of matrices QM = diag([q1m q2m q3m])
and RM = diag([r1m r2m]) have been chosen as QM = diag([1 1 0.0001])
and RM = I2, in order to obtain an appropriate performance, small errors
and smooth control signals. The initial location of the mobile robot is always
[0 0 0]T .

5.4.1 Experiment 1. Circular Trajectory

Figures 5.2a show the reference trajectory and the followed trajectories using
the four control strategies. Figure 5.2b shows the reference trajectory, the
trajectory followed using the predictive controller, and the ground-truth
(DGPS). First, it is possible to observe that the predictive and LMI-based
controllers achieve the best behaviour in comparison to the rest of motion
controllers. Nevertheless, all the compared controllers achieves a proper result
and the mobile robot comes back to the initial point of the circular trajectory.
Notice that again, from Figure 5.2b, the trajectory obtained using the predic-
tive controller does not fix the ground-truth. In this particular experiment,
the maximum lateral deviation is 0.53 [m], and the mean lateral deviation is
0.18 [m] which means 1 [%] of the total travelled distance. Recall that this
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phenomenon is due to the use of the extended kinematic model (2.5) to esti-
mate the robot location (see a deeper discussion at the beginning of Section
4.4 in Chapter 4).
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Fig. 5.2 Experiment 1. Followed trajectories during the experiment

Figures 5.3a show the orientations followed by the four compared control
approaches. It is observed the satisfactory behaviour of the compared con-
trollers, especially the almost constant behaviour of the predictive controller.
Figure 5.3b plots the reference orientation, the orientation obtained using the
MPC controller, and the ground-truth (magnetic compass). In this case, the
orientation obtained using the MPC controller follows more accurately the
ground-truth than in the case of the LMI-based controller (see Figure 4.4b in
previous chapter). Particularly, the mean deviation for the MPC controller
is -0.67 [deg] with a standard deviation 8.26 [deg].

Figure 5.4 displays the slip estimations. As explained in the previous chap-
ter, the mean values of both slip estimations are considered. The mean slip
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(b) MPC-orientation versus ground-truth (compass)

Fig. 5.3 Experiment 1. Orientations

value is 4.81 [%] that confirms the results presented in Chapter 2 about the
mean slip value on a gravel soil.

The errors between the reference trajectory and those steered by the com-
pared controllers are displayed in Figure 5.5. In these plots is verified the
proper behaviour of the predictive and the LMI-based controllers. The sug-
gested FL controller also achieves a satisfactory result in comparison to the
OC controller. A positive longitudinal error is observed. This means that the
real robot is pursuing the reference robot. The mean longitudinal errors are:
0.05 [m] with standard deviation 0.05 [m] for the MPC controller, 0.05 [m]
with standard deviation 0.06 [m] for the LMI-based controller, 0.09 [m] with
standard deviation 0.10 [m] for the FL controller, and 0.13 [m] with standard
deviation 0.1 [m] for the OC controller. The mean lateral errors are: -0.002
[m] with standard deviation 0.05 [m] for the MPC controller, -0.01 [m] with
standard deviation 0.03 [m] for the LMI-based controller, -0.01 [m] with stan-
dard deviation 0.08 [m] for the FL controller, and -0.02 [m] with standard
deviation 0.06 [m] for the OC controller. The mean orientation errors are:
0.50 [deg] with standard deviation 5.80 [deg] for the MPC controller, 0.69
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Fig. 5.4 Experiment 1. Slip estimations for the MPC controller (comparing the
actual robot velocity obtained using visual odometry and track velocities obtained
using encoders)

[deg] with standard deviation 3.38 [deg] for the LMI-based controller, 1.80
[deg] with standard deviation 4.84 [deg] for the FL controller, and 2.27 [deg]
with standard deviation 4.73 [deg] for the OC controller. It is interesting to
remark the proper results obtained by the most elaborate control strategies,
namely, the predictive and the adaptive schemes. Particularly for this experi-
ment, although the predictive approach obtains the smaller mean errors, the
LMI-based controller achieves a surprising almost zero lateral error (look at
the standard deviation).

Figure 5.6 shows the reference velocities (denoted as vrfr and vrfl ), the
control inputs (referred to as vr and vl), and the real track velocities (labeled
as “Right Enc.” and “Left Enc.”) for the case of the MPC controller. The
motion controller increases the control inputs to compensate the negative
slip effect. Furthermore, in these plots, it can be checked the right tuning of
the low-level PI controllers, that is, the real velocities achieved by the tracks
follow properly the set-points given by the motion controller.

Finally, Figure 5.7 displays the pixel displacement values between consec-
utive images for the case of the MPC controller (visual odometry), and the
computation time employed by the predictive controller, the LMI-based con-
troller, and the FL controller. From Figure 5.7a it is possible to observe that
the pixel displacement values are aligned mainly around -100 [pixel]. It means
that for this challenging trajectory in which the robot changes constantly the
orientation and many shadows occur, the visual odometry algorithm works
satisfactorily. Figure 5.7b shows the computation time employed by the the
predictive controller, and the two suggested controllers in previous chapter.
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Fig. 5.5 Experiment 1. Error along the travelled distance

In this case, the mean computation time for the predictive controller is 0.24
[s], for the LMI-based controller is 0.25, and for the FL controller is 0.20 [s].
Recall that the motion controllers ran on the computer on-board the mobile
robot (Intel Pentium III 1GHz, 512 MB RAM).
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Fig. 5.6 Experiment 1. Control signals and actual tracks velocities for the MPC
controller
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Fig. 5.7 Experiment 1. Pixel displacements (for the MPC controller) and compu-
tation time (CPU time employed at each sampling instant)

5.4.2 Experiment 2. U-shaped Trajectory

In this second experiment, a U-shaped trajectory has been selected. It cons-
titutes an interesting trajectory that combines straight-line motions and two
90-degrees turns. The total travelled distance was close to 30 [m]. In order
to check the navigation architecture at low velocities, a maximum reference
velocity of 0.3 [m/s] was selected.

Figures 5.8a show the reference trajectory and the followed trajectories
using the four control strategies. Figure 5.8b displays the reference trajectory,
the trajectory followed using the predictive controller, and the ground-truth
(DGPS). In the former plot, it is possible to observe that the trajectory
obtained using the predictive controller follows satisfactorily the reference.
The trajectories obtained using the linear feedback controllers have an smooth
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oscillatory behaviour, especially after the 90-degrees turns. As in the previous
experiment, the trajectory followed using the predictive controller does not
fix the ground-truth. Particularly, the maximum lateral deviation is 0.72 [m],
and the mean lateral deviation is -0.11 [m], what means 0.40 [%] of the total
travelled distance.
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Fig. 5.8 Experiment 2. Followed trajectories during the experiment

Figures 5.9a show the orientations. From these figures, it is clearly ob-
served the smooth oscillatory behaviour of the linear feedback controllers,
especially at the end of the experiment. The orientation obtained using the
predictive controller follows the reference with very small oscillations. Figure
5.9b plots the reference orientation, the orientation obtained using the predic-
tive controller, and the ground-truth (magnetic compass). As expected, the
orientation obtained using the predictive controller does not fix the ground-
truth. In this case, the mean deviation is -0.11 [deg] with standard deviation
6.47 [deg].

Figure 5.10 displays the slip estimations. In this case, the median slip
value for the right track was 6.32 [%], and for the left track was 2.17 [%].
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Fig. 5.9 Experiment 1. Orientations

As in previous chapter, both slip values are different. The reason is that the
same actual velocity has been used for both tracks. In further works, two
independent cameras will be employed to estimate the actual velocity of each
track.

The error between the reference trajectory and those steered by the com-
pared controllers are plotted in Figure 5.11. Especially remarkable is the
almost zero lateral error achieved by the MPC controller. The mean longi-
tudinal errors are: 0.02 [m] with standard deviation 0.03 [m] for the MPC
controller, 0.02 [m] with standard deviation 0.03 [m] for the LMI-based con-
troller, 0.09 [m] with standard deviation 0.05 [m] for the FL controller, and
0.13 [m] with standard deviation 0.06 [m] for the OC controller. The mean
lateral errors are: 0 [m] with standard deviation 0.04 [m] for the predictive
controller, -0.004 [m] with standard deviation 0.03 for the LMI-based con-
troller, 0.02 [m] with standard deviation 0.17 [m] for the FL controller, and
0.01 [m] with standard deviation 0.18 [m] for the OC controller. The mean
orientation errors are: 0.43 [deg] with standard deviation 4.74 [deg] for the
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Fig. 5.10 Experiment 2. Slip estimations for the MPC controller (comparing the
actual robot velocity obtained using visual odometry and track velocities obtained
using encoders)

MPC controller, 0.26 [deg] with standard deviation 2.49 [deg] for the LMI-
based controller, 0.66 [deg] with standard deviation 8.16 [deg] for the FL
controller, and 1.09 [deg] with standard deviation 8.51 [deg] for the OC con-
troller. As in the previous experiment, the elaborate control strategies obtain
the best results.

Figure 5.12 displays the reference velocities, the control inputs, and the
real track velocities for the case of the predictive controller. These plots notice
the proper tuning of the PI controllers, since the real velocities of the tracks
follow satisfactorily the set-points. It is important to clarify that the smooth
oscillatory behaviour of the right track is stressed by that fact that the mobile
robot was moving on a partially bumpy gravel soil. In this scenario, little
stones produce vibrations to the vehicle, and hence to the tracks. Notice that
in the previous chapter, a similar behaviour was observed for the LMI-based
controller. In such experiment, the oscillatory behaviour was noticed for the
left track (see Figure 4.13b).

Finally, Figure 5.13a displays the pixel displacement between consecutive
images for the MPC controller (visual odometry). As in previous experiment,
few outliers appear due to the proper downward camera position and the
threshold filter. Notice that in this experiment the mean value of the pixel
displacement is around -50 [pixel]. This confirms that the mobile robot was
moving at a slower velocity than in previous experiment. Figure 5.13b shows
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Fig. 5.11 Experiment 2. Error along the travelled distance

the computation time employed by the predictive controller, the LMI-based
controller, and the FL controller. The mean computation time for the pre-
dictive and the LMI-based controller is 0.24 [s] and for the FL controller is
0.19 [s].
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Fig. 5.12 Experiment 2. Control signals and actual tracks velocities for the MPC
controller
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(a) Visual odometry data
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Fig. 5.13 Experiment 2. Pixel displacements (visual odometry) and computation
time (CPU time employed at each sampling instant) for the MPC controller

5.5 Conclusions

The main contribution of this chapter is the successful adaptation and appli-
cation of a robust tube-based MPC strategy to the mobile robotics field. In
this case, the trajectory tracking error model of a mobile robot on slip con-
ditions, previously discussed in Chapter 2, has been considered. The control
objective is to steer an off-road mobile robot to the reference trajectory as
close as possible at each sampling instant.

From the theoretical point of view, an extension of tube-based predic-
tive control to time-varying systems is provided (via reachable sets). From a
practical point of view, the designed control strategy compensates slip and
guarantees that state and input constraints are fulfilled, since these cons-
traints are taken into account in the solution of the optimization problem.
The time-varying trajectory tracking error model has been addressed as a
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robust problem with additive uncertainties. Real-time execution has been
ensured using tube-based MPC formulation and it has been tested through
physical experiments. The comparative study with other control laws illus-
trates the excellent behaviour of the robust tube-based MPC strategy. Fur-
thermore, the suggested robust tube-based predictive strategy runs efficiently
on a limited performance computer (Intel Pentium III 1GHz, 512 MB RAM)
at a computation time below 0.35 [s].



Chapter 6

Conclusions and Future Works

6.1 Conclusions

When a tracked mobile robot operates in off-road conditions many distur-
bances and inconveniences can lead to a unsuccessful result. Some of these
inconveniences deal with robot-terrain interaction, such as slip and sinkage
phenomena, and with inaccurate robot localization. In this context, both a
careful and precise design and a strict testing process have to be carried
out to achieve a satisfactory and reliable result. The most important topics
to be analyzed are: mechanical robot configuration, robot modelling, path
planning, motion control, and robot localization.

The objectives of this monograph were: to formulate several models for
the trajectory tracking problem of tracked mobile robots taking into account
slip effects; to provide a vision-based localization strategy; and the design
of advanced slip compensation motion controllers ensuring constraints ful-
fillment and efficient real-time execution. To validate these contributions, a
whole navigation architecture was designed for a real mobile robot. In this
case, a tracked mobile robot, called Fitorobot and available at the University
of Almeŕıa (Spain), was employed.

The main contributions of this monograph are summarized as follows.
First, a comprehensive review of the state of the art dealing with the

particular problem of tracked locomotion has been addressed. Notice that
we were focusing on the limited problem of tracked mobile robots in planar
slippery conditions, then this book does not pretend to cover everything on
off-road mobile robotics.

Secondly, an extended kinematic model considering slip effect was conside-
red. This model avoids the estimation of complex variables usually related to
dynamic models. Additionally, physical experiments have pointed out that
the extended kinematic model is more accurate than the classic kinematic
model when the mobile robot moves in off-road conditions. Afterwards, se-
veral formulations of a trajectory tracking error model were suggested using
such extended kinematic model (continuous-time model, discrete-time model,
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and discrete-time model with additive uncertainties). These extended trajec-
tory tracking error models were employed to design slip compensation motion
controllers.

Regarding the localization issue, a visual-odometry-based technique was
suggested. The most interesting point is that two cameras were combined,
one for estimate the robot longitudinal displacement and another camera
to estimate the robot orientation (visual compass). In this way, typical pro-
blems related to error growth of odometry-based solutions and false-matching
phenomena of visual-odometry-based approaches are minimized. These loca-
lization techniques were validated through physical experiments. Those tests
permitted to check the suitability of the proposed schemes in comparison
with typical localization strategies such as wheel-based odometry.

Once the robot models and the localization techniques were developed
and tested, several motion control strategies were presented. Firstly, the
well-known linear feedback controller proposed in [21, 64] was modified. In
this case, time-dependent feedback gains were updated online using the esti-
mated slip. It is important to remark that, following the trajectory tracking
paradigm, both the location and velocity of the robot are controlled. To diffe-
rence of path tracking where only the steering motion of the robot is handled.
Furthermore, this control strategy demands a really small computation load.
The main drawback of this simple control strategy was that it did not take
into account state and input constraints. For that reason, more elaborate
control strategies were designed.

A slip compensation adaptive controller formulated using LMI was pro-
posed. The procedure to obtain this adaptive controller was: first, a set of
feedback gains were obtained offline, one gain for each extreme realization
of the system dynamics. Then, an adaptive feedback control law was ob-
tained online as a convex combination of the previously determined gains.
The main advantages of this control strategy were that asymptotic stability
was ensured, input and state constraints were fulfilled, and fast real-time ex-
ecution was achieved. The main weakness of this control scheme was that
uncertainty was not taken into account in the controller synthesis. In order
to solve this issue, robust control techniques were analyzed.

A robust tube-based MPC controller was also suggested. The main ad-
vantages of this control strategy were: robustness (uncertainties were taken
into account in the controller synthesis), and input and state constraints
fulfillment. From the theoretical point of view, it was provided the exten-
sion of tube-based predictive control to time-varying systems (via reachable
sets). From the practical point of view, a robust predictive control strategy
running efficiently in real-time was successfully applied to steer an off-road
mobile robot.

Finally, a whole navigation architecture was designed to test closed-loop
physical experiments using a tracked mobile robot. In this way, motion con-
trol strategies were validated in real off-road conditions. The obtained results
demonstrate the satisfactory behaviour of slip compensation controllers in
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comparison with controllers with no slip compensation and the proper inte-
gration of the visual-odometry-based localization technique. Notice that this
navigation architecture can be easily adapted to any kind of mobile robots.

6.2 Future Works

From the modelling point of view, it would be interesting to extend the
current trajectory tracking error model based on robot kinematics taking
into account dynamic effects (tractive forces, robot mass, inertia, etc.). This
work will require new models dealing with terra-mechanics (terrain classifi-
cation and characterisation) and to measure online some parameters related
to track-soil interactions. For that reason, new sensors should be installed on
board the robot. Furthermore, motion controllers will be reformulated taking
into account these dynamic variables, what will lead to new sets of constraints
in terms of maximization of robot traction and minimization of slip.

From the localization point of view, an attractive future work will consist
in improving the main weakness of the presented vision-based scheme, that
is, the false matches due to shadows. In this way, a probabilistic localization
scheme can be employed combining visual odometry with other localization
strategies. Minor improvements can be to analyze new positions for the cam-
eras and new filters or algorithms to reduce the effect of false matches.

Another future work can be to extended the current robust predictive con-
trol scheme updating online the uncertainty set using the information given
by a Kalman filter about the uncertainty on the robot location. As known,
the Kalman filter strategy generates at each sampling instant a covariance
matrix, which comprises the uncertainty on the robot location in terms of a
Gaussian probability distribution. The challenge about this issue is that two
different data structures are involved, the covariance matrix (statistical data)
and the additive uncertainty term (polytope). A first possible solution is via
the mathematical structures called “Gaussian random polytopes” [5]. This
approach is based on generating n random points with respect to a uniform
distribution and obtaining the convex hull of these points, which leads to
polytopic structures. Another possible solution is considering the stochastic
MPC framework [70]. Here, states are regarded as stochastic variables and
instead of minimizing a deterministic objective function, the expected value
of a objective function is minimized.

Finally, a degree of reactiveness will be added to the current navigation
architecture permitting to the mobile robot to circumnavigate obstacles and
to avoid unpredicted risky situations. This improvement will enable to meet
a wider area of application of the work presented in this monograph.
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Switzerland (2008)

[116] Scheding, S., Dissanayake, G., Nebot, E., Durrant-Whyte, H.: Slip Modelling
and Aided Inertial Navigation of an LHD. In: IEEE International Confe-
rence on Robotics and Automation, Albuquerque, USA, pp. 1904–1909. IEEE
(April 1997)

[117] Siegwart, R., Lamon, P., Estier, T., Lauria, M., Piguet, R.: Innovative De-
sign for Wheeled Locomotion in Rough Terrain. Robotics and Autonomous
Systems 40(2-3), 151–162 (2002)

[118] Siegwart, R., Nourbakhsh, I.: Introduction to Autonomous Mobile Robots,
1st edn. A Bradford book. The MIT Press, USA (2004)



118 References

[119] Srinivasan, M.V.: An Image–interpolation Technique for the Computation of
Optic Flow and Egomotion. Journal of Biological Cybernetics 71(5), 401–415
(1994)

[120] Sturm, J., Visser, A.: An Appearance–based Visual Compass for Mobile
Robots. Robotics and Autonomous Systems 57(5), 536–545 (2009)

[121] Tanaka, K., Kosaki, T., Wang, H.O.: Backing Control Problem of a Mobile
Robot with Multiple Trailers: Fuzzy Modeling and LMI–Based Design. IEEE
Transactions on Systems, Man and Cybernetics 28(3), 329–337 (1998)

[122] Tardos, J.D., Neira, J., Newman, P.M., Leonard, J.J.: Robust Mapping and
Localization in Indoor Environments Using Sonar Data. The International
Journal of Robotics Research 21(4), 311–330 (2002)

[123] Thrun, S., Burgard, W., Fox, D.: Probabilistic Robotics. Intelligent Robotics
and Autonomous Agents Series. The MIT Press, USA (2005)

[124] Thrun, S., Thayer, S., Whittaker, W., Baker, C., Burgard, W., Ferguson,
D., Haehnel, D., Montemerlo, M., Morris, A.C., Omohundro, Z., Reverte,
C., Whittaker, W.L.: Autonomous Exploration and Mapping of Abandoned
Mines. IEEE Robotics and Automation Magazine 11(1), 79–91 (2004)

[125] Thueer, T., Krebs, A., Siegwart, R.: Performance Comparison of Rough–
Terrain Robots – Simulation and Hardware. Journal of Field Robotics 24(3),
251–271 (2007)

[126] Trodden, P., Richards, A.: Distributed Model Predictive Control of Linear
Systems with Persistent Disturbances. International Journal of Control 83(8),
1653–1663 (2010)

[127] Vinh, T.Q., Giap, N.H., Kim, T.W., Jeong, M.G., Shin, J.H., Kim, W.H.:
Adaptive Robust Fuzzy Control and Implementation for Path Tracking of a
Mobile Robot. In: IEEE International Symposium on Industrial Electronics,
Seoul, Korea, pp. 1943–1949. IEEE (July 2009)

[128] Wan, J., Vehi, J., Luo, N.: A Numerical Approach to Design Control Invari-
ant Sets for Constrained Nonlinear Discrete–time Systems with Guaranteed
Optimality. Journal of Global Optimization 44(3), 395–407 (2009)

[129] Wang, D., Low, C.B.: Modeling and Analysis of Skidding and Slipping in
Wheeled Mobile Robots: Control Design Perspective. IEEE Transactions on
Robotics 24(3), 676–687 (2008)

[130] Ward, C.C., Iagnemma, K.: A Dynamic–Model–Based Wheel Slip Detector
for Mobile Robots on Outdoor Terrain. IEEE Transactions on Robotics 24(4),
821–831 (2008)

[131] Welch, G., Bishop, G.: An Introduction to the Kalman Filter. In: SIGGRAPH
2001 Course, Los Angeles, USA. ACM Press, Addison–Wesley (August 2001)

[132] Wong, J.Y.: Theory of Ground Vehicles, 3rd edn. John Wiley & Sons, Inc.,
USA (2001)

[133] Wong, J.Y., Huang, W.: Wheels vs. Tracks – A Fundamental Evaluation From
the Traction Perspective. Journal of Terramechanics 43(1), 27–42 (2006)

[134] Yang, T., Liu, Z., Chen, H., Pei, R.: Distributed Robust Control of Multi-
ple Mobile Robots Formations via Moving Horizon Strategy. In: American
Control Conference, Minneapolis, USA, pp. 2838–2843. IEEE (June 2006)

[135] Yang, T.T., Liu, Z.Y., Chen, H., Pei, R.: The Research on Robust Tracking
Control of Constrained Wheeled Mobile Robots. In: International Conference
on Machine Learning and Cybernetics, Guangzhou, Japan, pp. 1356–1361.
IEEE (August 2005)



References 119

[136] Yi, J., Song, D., Zhang, J., Goodwin, Z.: Adaptive Trajectory Tracking Con-
trol of Skid–Steered Mobile Robots. In: International Conference on Robotics
and Automation, Rome, Italy, pp. 2605–2610. IEEE (April 2007)

[137] Yi, J., Wang, H., Zhang, J., Song, D., Jayasuriya, S., Liu, J.: Kinematic
Modeling and Analysis of Skid–Steered Mobile Robots With Applications
to Low–Cost Inertial–Measurement–Unit Based Motion Estimation. IEEE
Transactions on Robotics 25(5), 1087–1097 (2009)

[138] Zames, G., Francis, B.A.: Feedback, Minimax Sensitivity, and Optimal Ro-
bustness. IEEE Transactions on Automatic Control 28(5), 585–601 (1983)


	Contents
	Introduction
	1.1 The Importance of Tracked Vehicles
	1.1.1 Tracked Vehicles along History
	1.1.2 Autonomous Tracked Vehicles

	1.2 Motivation and Contributions
	1.3 Outline of this Monograph
	1.4 Assumptions and Limitations

	Modelling Tracked Robots in Planar Off-Road Conditions
	2.1 Introduction
	2.2 Extended Kinematic Model with Slip
	2.3 Extended Trajectory Tracking Error Model with Slip
	2.4 Discrete-Time Trajectory Tracking Error Model and Model Uncertainties
	2.5 State and Input Constraints
	2.6 Estimating Slip
	2.7 Results
	2.7.1 Testing the Sensor Performance
	2.7.2 Model Validation
	2.7.3 Additive Uncertainty Identification

	2.8 Conclusions

	Localization of Tracked Robots in Planar Off-Road Conditions
	3.1 Introduction
	3.2 Localization Using Visual Odometry
	3.2.1 Template Matching
	3.2.2 Estimating Robot Displacement
	3.2.3 Estimating Robot Orientation: Visual Compass
	3.2.4 Localization Approach Combining Visual Odometry with Visual Compass
	3.2.5 Computational Aspects of Template Matching

	3.3 Results
	3.3.1 Testing the Sensor Performance
	3.3.2 Localization Strategies Validation

	3.4 Conclusions

	Adaptive Motion Controllers for Tracked Robots
	4.1 Introduction
	4.2 Slip Compensation Adaptive Controller Using Dynamic Feedback Linearization
	4.3 Slip Compensation Adaptive Controller Using an LMI-Based Approach
	4.3.1 Problem Statement
	4.3.2 Asymptotic Stability and Performance
	4.3.3 Input Constraints
	4.3.4 State Constraints
	4.3.5 Performance Region
	4.3.6 Final Optimization Problem

	4.4 Results
	4.4.1 Experimental Results

	4.5 Conclusions

	Robust Predictive Motion Controller for Tracked Robots
	5.1 Introduction
	5.2 Problem Statement
	5.3 Robust Tube-Based MPC Controller
	5.3.1 Local Compensation of System Dynamics
	5.3.2 Reachable Sets Calculation
	5.3.3 Terminal Constraints for MPC
	5.3.4 MPC Strategy

	5.4 Results
	5.4.1 Experiment 1. Circular Trajectory
	5.4.2 Experiment 2. U-shaped Trajectory

	5.5 Conclusions

	Conclusions and Future Works
	6.1 Conclusions
	6.2 Future Works

	References



